The F2 molecular orbital diagram shows 4e- are in the highest energy antibonding (destabilizing) molecular orbitals resulting in a bond order = 1.
Single bonds are easier to break and therefore more reactive. So the answer is yes.
0.114 mol/l
The equilibrium equation will be:
Kc = ([Br2][Cl2])/[BrCl]^2
The square factor for BrCl is due to the 2 coefficient on that side of the equation.
Now solve for BrCl, substitute the known values and calculate.
Kc = ([Br2][Cl2])/[BrCl]^2
[BrCl]^2 * Kc = ([Br2][Cl2])
[BrCl]^2 = ([Br2][Cl2])/Kc
[BrCl] = sqrt(([Br2][Cl2])/Kc)
[BrCl] = sqrt(0.043 mol/l * 0.043 mol/l / 0.142)
[BrCl] = sqrt(0.001849 mol^2/l^2 / 0.142)
[BrCl] = sqrt(0.013021127 mol^2/l^2)
[BrCl] = 0.114110152 mol/l
Rounding to 3 significant figures gives 0.114 mol/l
Explanation:
A) particles are close together in random positions with about equal kinetic energy and intermolecular forces.
These points are about liquid state.
B) particles are close together in fixed positions with low kinetic energy
These points satisfy the qualities of Solid state
C)particles are far apart with greater kinetic energy and low intermolecular forces.
The above qualities are for Gaseous state of matter
A) Liquid
B)Solid
C)Gas
You’re answer is C Explaination if the pit side was facing earth it wouldn’t be a new moon
Answer:
from where should I have to chose