The molarity of the resulting solution obtained by diluting the stock solution is 3 M
<h3>Data obtained from the question </h3>
- Molarity of stock solution (M₁) = 15 M
- Volume of stock solution (V₁) = 500 mL
- Volume of diluted solution (V₂) = 2.5 L = 2.5 × 1000 = 2500 mL
- Molarity of diluted solution (M₂) =?
<h3>How to determine the molarity of diluted solution </h3>
M₁V₁ = M₂V₂
15 × 500 = M₂ × 2500
7500 = M₂ × 2500
Divide both side by 2500
M₂ = 7500 / 2500
M₂ = 3 M
Thus, the volume of the resulting solution is 3 M
Learn more about dilution:
brainly.com/question/15022582
#SPJ1
Answer:
3.089 L
Explanation:
From the given information, provided that the no of moles and the temperature remains constant;
= 15.6 psi
= ???
= 25.43 psi
= 1.895 L
Using Boyle's law:

CaCO₃ + 2HCl = CaCl₂ + CO₂ + H₂O
n(CaCO₃)=m(CaCO₃)/M(CaCO₃)
n(CaCO₃)=13.00/100.09=0.1299 mol
Δm=13.00+52.65-60.32=5.33 g
m(CO₂)=5.33 g
n(CO₂)=5.33/44.01=0,1211 mol
w=0.1211/0.1299=0,9323 (93.23%)
<u>Answer:</u> The correct answer is Option 3.
<u>Explanation:</u>
All the radioisotope decay processes follow first order kinetics.
Rate law expression for first order kinetics is given by the equation:

where,
k = rate constant = ?
t = time taken for decay process = 8.32 seconds
a = initial amount of the reactant = 80 mg
a - x = amount left after decay process = 20 mg
Putting values in above equation, we get:

The equation used to calculate half life for first order kinetics:

where,
= half life of the reaction = ?
k = 
Putting values in above equation, we get:

Hence, the correct answer is Option 3.
Answer:
The atomic mass of methane (CH4)is 12 amu for the carbon plus 4 x 1 amu for the four hydrogens, for a total of 16 amu. Therefore, the molar mass of methane is 16g.