Answer:
μ = 0.724
Explanation:
maximum acceleration for SHM
a = ω²A
ω = 2πf
a = 4π²f²A
a = 4π²(1.50)²(0.080) = 7.106... m/s²
μ = F/N = ma/mg = a/g = 7.106/9.81 = 0.7243...
I'm cynical that a block can be cynical. Wassa madder, doesn't trust anyone?
Answer:
A. quality of road-making material
Explanation:
The CBR method of flexible pavement design gives an idea about the:
A. quality of road-making material
B. traffic intensities
C. characteristics of soil
D. All of the above
The California Bearing Ratio (CBR) test is a penetration test used to evaluate the subgrade strength of roads and pavements. The results of these tests are used with the curves to determine the thickness of pavement and its component layers. it is the measure of the resistance of a material against the penetration of a standard plunger.
This can be used to determine the quality of road making material. CBR is expressed as the percentage of the actual load to the standard load.
<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Physics</u>
<u>Energy</u>
Elastic Potential Energy: 
- U is energy (in J)
- k is spring constant (in N/m)
- Δx is displacement from equilibrium (in m)
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
k = 7.50 N/m
Δx = 0.40 m
<u>Step 2: Find Potential Energy</u>
- Substitute in variables [Elastic Potential Energy]:

- Evaluate exponents:

- Multiply:

- Multiply:

A is the answer do ur this question
Answer:
Bowling Ball
Explanation:
The potential energy depends on the factors: mass of the object and distance between the two objects. In this case the distance is between the ground and the balls. Here, the bowling ball is heaviest and its center of mass is farthest in comparison to other two balls. Thus, it has the greatest potential energy.