1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kodGreya [7K]
3 years ago
11

I have an exam and I need your help

Mathematics
1 answer:
Serggg [28]3 years ago
3 0
Y=144 is the correct answer!!
You might be interested in
The circumference of the bike tire above is 83.524 inches. What is the radius of the bike tire?
dezoksy [38]
Divide 83.524 by pi then take half of that answer .
the answer should be 13.29 or 13.3
3 0
3 years ago
let X represent the amount of time till the next student will arriv ein the library partking lot at the university. If we know t
AlekseyPX

Answer:

0.606531 = 60.6531% probability that it will take between 2 and 132 minutes for the student to arrive at the library parking lot.

Step-by-step explanation:

Exponential distribution:

The exponential probability distribution, with mean m, is described by the following equation:

f(x) = \mu e^{-\mu x}

In which \mu = \frac{1}{m} is the decay parameter.

The probability that x is lower or equal to a is given by:

P(X \leq x) = \int\limits^a_0 {f(x)} \, dx

Which has the following solution:

P(X \leq x) = 1 - e^{-\mu x}

The probability of finding a value higher than x is:

P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}

Mean of 4 minutes

This means that m = 4, \mu = \frac{1}{4} = 0.25

Find the probability that it will take between 2 and 132 minutes for the student to arrive at the library parking lot:

This is:

P(2 \leq X \leq 132) = P(X \leq 132) - P(X \leq 2)

In which

P(X \leq 132) = 1 - e^{-0.25*132} = 1

P(X \leq 2) = 1 - e^{-0.25*2} = 0.393469

P(2 \leq X \leq 132) = P(X \leq 132) - P(X \leq 2) = 1 - 0.393469 = 0.606531

0.606531 = 60.6531% probability that it will take between 2 and 132 minutes for the student to arrive at the library parking lot.

4 0
3 years ago
Is this right or wrong ?
Otrada [13]

Answer:

(3x - 2)(4x + 6) = 12 {x}^{2} + 18x - 8x + - 12 \\  = 12 {x}^{2} + 10x - 12

6 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Someone please help me
Cerrena [4.2K]

Answer:

-27 + 19 = -8

-78 - 36 = - 114

6 + 12 = 18

46 - 9 = 37

8 0
3 years ago
Other questions:
  • How do you simplify 1/5(40x^5+13x^3-3x-5)-(3x^5-5x^3+5x)
    9·1 answer
  • 4(2+3)-[7-[4-(8+5)]can you help me with this question
    9·2 answers
  • What is the domain of f?
    12·1 answer
  • Which cube is a unit cube?
    10·2 answers
  • What is the calue of the 9 in the number 914,566
    15·2 answers
  • Please help me I don’t know
    7·1 answer
  • Convert the number to scientific notation.<br><br><br> 0.02 =
    11·2 answers
  • So my mind is dead.....HELP MEEEEE!!!!!! THX PEEPS..XP
    12·1 answer
  • Divide<br><br> -5/9 by 5/7 :<br><br> a)-7/9<br> b)-9/7<br> c)7/9<br> d)9/7
    14·1 answer
  • Note: Enter your answer and show all the steps that you use to solve this problem in the space provided.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!