Answer:
protons (+ charge) & neutrons (neutral charge)
however protons has a positive charge so it determined what atom it is.
Answer:
In a global convection cell less –dense air at the equator rises and flows towards the poles. And from pole, the dense air sinks down and flows back towards the equator.... This movement of air is also supported by the Earth's rotation known as Coriolis Effect.
Answer:
it moves 25 inches.
Explanation:
the east west bit isn't important, ignore it. if an ant starts at 6 then moves to 19 then we need to subtract 19 from 6, that's 13. then it moves to 7. the difference between 19 and 7 is 12. add that to 13 and you get 25. it's important to remember that there is no such thing as negative distance. if it moved, then it counts.
To solve this problem, use the ratio given by the total number of electrons or protons that exist as a function of the total charge, and inversely proportional to the value of the fundamental charge. The number of fundamental unit
that constitutes a charge of 40.0C can be calculated as

Here,
= Value of charge and it is the fundamental charge
Q = Total Charge
N = Total number of electron or protons
The number of fundamental units is calculated as follows


Therefore the number of fundamental charge units moved by lightning bolt is 
No. A neutron star is the weird remains of a star that blew its outer layers off
in a nova event, and then had enough mass left so that gravity crushed its
electrons into its protons, and then what was left of it shrank down to a sphere
of unimaginably dense neutron soup. But it didn't have enough mass to go
any farther than that.
A black hole is the remains of a star that had enough mass to go even farther
than that. No force in the universe was able to stop it from contracting, so it
kept contracting until its mass occupied no volume ... zero. It became even
more weird, and is composed of a substance that we don't know anything about
and can't describe, and occupies zero volume.
Contrary to popular fairy tales, a black hole doesn't reach out and "suck things in".
It's just so small (zero) that things can get very close to it. You know that gravity
gets stronger as you get closer to an object, so if the object has no size at all, you
can get really really close to it, and THAT's where the gravity gets really strong.
You may weigh, let's say, 100 pounds on the Earth. But you're like 4,000 miles
from the center of the Earth. What if all of the earth's mass was crammed into
the size of a bean. Then you could get 1 inch from it, and at that distance from
the mass of the Earth, you would weigh 25,344,000,000 pounds.
But Earth's mass is not enough to make a black hole. That takes a minimum
of about 3 times the mass of the sun, which is right about 1 million times the
Earth's mass. THEN you can get a lightweight black hole.
Do you see how it works now ?
I know. It all seems too fantastic to be true.
It sure does.