Answer:
The heat capacity for the second process is 15 J/K.
Explanation:
Given that,
Work = 100 J
Change temperature = 5 k
For adiabatic process,
The heat energy always same.


We need to calculate the number of moles and specific heat
Using formula of heat


Put the value into the formula


We need to calculate the heat
Using formula of heat

Put the value into the formula


We need to calculate the heat capacity for the second process
Using formula of heat

Put the value into the formula



Hence, The heat capacity for the second process is 15 J/K.
True: Friction depends on the types of surfaces involved and how hard the surfaces push together.
Answer:
0.67 s
Explanation:
This is a simple harmonic motion (SHM).
The displacement,
, of an SHM is given by

A is the amplitude and
is the angular frequency.
We could use a sine function, in which case we will include a phase angle, to indicate that the oscillation began from a non-equilibrium point. We are using the cosine function for this particular case because the oscillation began from an extreme end, which is one-quarter of a single oscillation, when measured from the equilibrium point. One-quarter of an oscillation corresponds to a phase angle of 90° or
radian.
From trigonometry,
if A and B are complementary.
At
, 


So

At
, 





The period,
, is related to
by

Answer:
we need to see the answers but probably 1 or -1
Answer:
4 A
Explanation:
V = IR, where V=voltage, I=current, R=resistance. This is Ohm's Law. (remember that for units V = volts, Ω = ohms, A = amperes.)
V = IR
12 V = I * 3 Ω
12/3 = I
<u>I = 4 A</u>