Answer:
Explanation:
AgCl ⇄ Ag⁺ + Cl⁻
m m m
If x mole of AgCl be dissolved in one litre .
[ Ag⁺ ] [ Cl⁻ ] = 1.6 x 10⁻¹⁰
m² = 1.6 x 10⁻¹⁰
m = 1.26 x 10⁻⁵ moles
So solubility of AgCl is 1.26 x 10⁻⁵ moles / L
Answer: 11.5 moles of carbon
Explanation:
Based on Avogadro's law:
1 mole of any substance has 6.02 x 10^23 atoms
So, 1 mole of carbon = 6.02 x 10^23 atoms
Z moles = 6.93 x 10^24 atoms
To get the value of Z, cross multiply:
(6.93 x 10^24 atoms x 1mole) = (6.02 x 10^23 atoms x Z moles)
6.93 x 10^24 = (6.02 x 10^23 x Z)
Z = (6.93 x 10^24) ➗ (6.02 x 10^23)
Z = 1.15 x 10
Z = 11.5 moles
Thus, there are 11.5 moles of carbon.
Answer:
0.121 moles of aluminum metal are required to produce 4.04 L of hydrogen gas at 1.11 atm and 27 °C by reaction with HCl
Explanation:
This is the reaction:
2 Al(s) + 6 HCl(aq) → 2 AlCl₃ (aq) + 3 H₂(g)
To make 3 moles of H₂, we need 2 moles of Al.
By conditions given, we will find out how many moles of H₂ do we have.
Let's use the Ideal Gas Law
P. V = n . R . T
1.11 atm . 4.04L = n . 0.082 L.atm/mol.K . 300K
(1.11 atm . 4.04L) / (0.082 mol.K/L.atm . 300K) = n
0.182 mol = n
So the rule of three will be:
If 3 moles of H₂ came from 2 moles of Al
0.182 moles of H₂ will come from x
(0.182 .2) / 3 = 0.121 moles
Answer:
The use of pomace for animal feed might be chosen if minimizing production costs is desired
Explanation:
i've taken the test