Answer:
32.7 g of Zn
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl₂ + H₂
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂
Next, we shall determine the number of mole of Zn required to produce 0.5 mole of H₂. This can be obtained as follow:
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂.
Therefore, 0.5 mole of Zn will also react to produce to 0.5 mole of H₂.
Thus, 0.5 mole of Zn is required.
Finally, we shall determine the mass of 0.5 mole of Zn. This can be obtained as follow:
Mole of Zn = 0.5 mole
Molar mass of Zn = 65.4 g/mol
Mass of Zn =?
Mass = mole × molar mass
Mass of Zn = 0.5 × 65.4
Mass of Zn = 32.7 g
Thus, 32.7 g of Zn is required to produce 0.5 mole of H₂.
5.22*22^3 should be the answer
Answer:
See explanation
Explanation:
If we look at the electron configuration closely, we will discover that the element must have had a ground state electron configuration of 2,4.
This is because, the innermost shell usually holds two electrons while the outer shells hold eight electrons each. The four electrons must be accommodated in the second shell in the ground state configuration of the compound.
However, when the atom is excited, one electron from this shell may move to the third shell to give the excited state configuration 2-3-1 as shown in the question.
Ice melts when heat energy causes the molecules to move faster, breaking the hydrogen bonds between molecules to form liquid water.
the results from the breakdown of proteins and amino acids causing a foul smell