Answer:
eccentrcity of orbit is 0.22
Explanation:
GIVEN DATA:
Initial velocity of satellite = 8333.3 m/s
distance from the sun is 600 km
radius of earth is 6378 km
as satellite is acting parallel to the earth therefore
and radial component of given velocity is zero
we have
h = 6.97*10^6 *8333.3 = 58.08*10^9 m^2/s
we know that
so
solvingt for
therefore eccentrcity of orbit is 0.22
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:
By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Answer:
#Initialise a tuple
team_names = ('Rockets','Raptors','Warriors','Celtics')
print(team_names[0])
print(team_names[1])
print(team_names[2])
print(team_names[3])
Explanation:
The Python code illustrates or printed out the tuple team names at the end of a season.
The code displayed is a function that will display these teams as an output from the program.