There are 3 significant figures. Significant numbers are the numbers that build up your total number. 1-9 always count, 0 only counts if it’s after another number. For example: 0,901 has 3 significant numbers as does 0,910. 9,10 also has 3. 0,09 has just 1.
1. they work ways faster
2. you don't need 100 people making the same thing at once
3. its a better chance of not getting an injury
Answer:
<h3>The answer is 1000 g</h3>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of object = 50 mL
density = 20 g/mL
We have
mass = 20 × 50
We have the final answer as
<h3>1000 g</h3>
Hope this helps you
Answer:
(a) The system does work on the surroundings.
(b) The surroundings do work on the system.
(c) The system does work on the surroundings.
(d) No work is done.
Explanation:
The work (W) done in a chemical reaction can be calculated using the following expression:
W = -R.T.Δn(g)
where,
R is the ideal gas constant
T is the absolute temperature
Δn(g) is the difference between the gaseous moles of products and the gaseous moles of reactants
R and T are always positive.
- If Δn(g) > 0, W < 0, which means that the system does work on the surroundings.
- If Δn(g) < 0, W > 0, which means that the surroundings do work on the system.
- If Δn(g) = 0, W = 0, which means that no work is done.
<em>(a) Hg(l) ⇒ Hg(g)</em>
Δn(g) = 1 - 0 = 1. W < 0. The system does work on the surroundings.
<em>(b) 3 O₂(g) ⇒ 2 O₃(g)
</em>
Δn(g) = 2 - 3 = -1. W > 0. The surroundings do work on the system.
<em>(c) CuSO₄.5H₂O(s) ⇒ CuSO₄(s) + 5H₅O(g)
</em>
Δn(g) = 5 - 0 = 5. W < 0. The system does work on the surroundings.
<em>(d) H₂(g) + F₂(g) ⇒ 2 HF(g)</em>
Δn(g) = 2 - 2 = 0. W = 0. No work is done.