Answer: 18 blocks in total ( 17 add to the original in contact with the ground)
Explanation:
The pressure on the face in contact with the ground ( we choose the face 0.15m x 0.082m)
Pressure= Force ( weigth) /Area
1 Atm = 101325 Pascal [N/ m^2]
Question: How fast was the arrow moving before it joined the block?
Answer:
The arrow was moving at 15.9 m/s.
Explanation:
The law of conservation of energy says that the kinetic energy of the arrow must be converted into the potential energy of the block and arrow after it they join:

where
is the mass of the arrow,
is the mass of the block,
of the change in height of the block after the collision, and
is the velocity of the arrow before it hit the block.
Solving for the velocity
, we get:

and we put in the numerical values
,



and simplify to get:

The arrow was moving at 15.9 m/s
Answer:
The answer is: To accelerate an object <u>the force applied to the object</u> has to increase.
Explanation:
the acceleration of an object <u>increases with increased force</u> and <u>decreases with increased mass.</u>
V (speed) = F (frequency) x Wavelength
If we rearrange the formula, making frequency the subject;
F (frequency) = Speed ÷ Wavelength
F = 300,000 m\s x 4.5 e -10m
F = 0.08810409956 Hz
Answer:
2400kgm²
Explanation:
Rotational inertia=mass x radius²