1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slega [8]
3 years ago
15

Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge th

at has charge q and acceleration a is given by dEdt=q2a26πϵ0c3 where c is the speed of light.Part AIf a proton with a kinetic energy of 5.0 MeV is traveling in a particle accelerator in a circular orbit with a radius of 0.530 m , what fraction of its energy does it radiate per second?(dE/dt)⋅1sE =
Physics
1 answer:
statuscvo [17]3 years ago
3 0

Answer:

 P /K = 1,997 10⁻³⁶  s⁻¹

Explanation:

For this exercise let's start by finding the radiation emitted from the accelerator

       \frac{dE}{dt} = \frac{q^{2} a^{2} }{6\pi  \epsilon_{o} c^{2}    }

the radius of the orbit is the radius of the accelerator a = r = 0.530 m

let's calculate

       \frac{dE}{dt} = [(1.6 10⁻¹⁹)² 0.530²] / [6π 8.85 10⁻¹² (3 108)³]

      P= \frac{dE}{dt}= 1.597 10⁻⁵⁴ W

Now let's reduce the kinetic energy to SI units

       K = 5.0 10⁶ eV (1.6 10⁻¹⁹ J / 1 eV) = 8.0 10⁻¹⁹ J

the fraction of energy emitted is

      P / K = 1.597 10⁻⁵⁴ / 8.0 10⁻¹⁹

      P /K = 1,997 10⁻³⁶  s⁻¹

You might be interested in
A ball is kicked at an angle of 35° with the ground.a) What should be the initial velocity of the ball so that it hits a target
stiks02 [169]

Answer:

a.18.5 m/s

b.1.98 s

Explanation:

We are given that

\theta=35^{\circ}

a.Let v_0 be the initial velocity of the ball.

Distance,x=30 m

Height,h=1.8 m

v_x=v_0cos\theta=v_0cos35

v_y=v_0sin\theta=v_0sin35

x=v_0cos\theta\times t=v_0cos35\times t

t=\frac{30}{v_0cos35}

h=v_yt-\frac{1}{2}gt^2

Substitute the values

1.8=v_0sin35\frac{30}{v_0cos35}-\frac{1}{2}(9.8)(\frac{30}{v_0cso35})^2

1.8=30tan35-\frac{6574.6}{v^2_0}

\frac{6574.6}{v^2_0}=21-1.8=19.2

v^2_0=\frac{6574.6}{19.2}

v_0=\sqrt{\frac{6574.6}{19.2}}=18.5 m/s

Initial velocity of the ball=18.5 m/s

b.Substitute the value then we get

t=\frac{30}{18.5cos35}

t=1.98 s

Hence, the time for the ball to reach the target=1.98 s

7 0
3 years ago
When a hammer thrower releases her ball, she is aiming to maximize the distance from the starting ring. Assume she releases the
Taya2010 [7]

Answer:

The angular velocity is 15.37 rad/s

Solution:

As per the question:

\theta = 54.6^{\circ}

Horizontal distance, x = 30.1 m

Distance of the ball from the rotation axis is its radius, R = 1.15 m

Now,

To calculate the angular velocity:

Linear velocity, v = \sqrt{\frac{gx}{sin2\theta}}

v = \sqrt{\frac{9.8\times 30.1}{sin2\times 54.6}}

v = \sqrt{\frac{9.8\times 30.1}{sin2\times 54.6}}

v = \sqrt{\frac{294.98}{sin109.2^{\circ}}} = 17.67\ m/s

Now,

The angular velocity can be calculated as:

v = \omega R

Thus

\omega = \frac{v}{R} = \frac{17.67}{1.15} = 15.37\ rad/s

8 0
3 years ago
A pulley has a mechanical advantage of 1.
sertanlavr [38]

Answer:

There is no mechanical advantage

Explanation:

The mechanical advantage is possible only when the force needed to lift a load is lesser than the weight of the load.

For example, is we have a mechanical advantage of 2, the force needed to lift will be 1/2 of the weight of the load, and if we have a mechanical advantage of 4, the force needed will be 1/4 of the weight of the load.

In the attached image there are clear examples of mechanical advantage with pulleys.

7 0
3 years ago
An object dropped on Planet P falls 144 m in 6 seconds. What is the gravitational acceleration of Planet P ? Gravitational accel
Tju [1.3M]

Answer:

The gravitational acceleration of the planet is, g = 8 m/s²

Explanation:

Given data,

The distance the object falls, s = 144 m

The time taken by the object is, t = 6 s

Using the III equations of motion

                  S = ut + ½ gt²

∴                 g = 2S/t²

Substituting the given values,

                   g = 2 x 144 /6²

                      = 8 m/s²

Hence, the gravitational acceleration of the planet is, g = 8 m/s²

7 0
4 years ago
In an economy, the demand for labor is given by the equation W = 15 - (1/200) L and the supply of labor is given by the equation
mr_godi [17]

Answer:

the equilibrium wage rate is 10  and the equilibrium quantity of labor is 1000 workers

Explanation:

The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

W_{Demand} = W_{Supply}

15 - (1/200) L = 5 + (1/200) L

15 - 5 =  (1/200) L +  (1/200) L

10 = (2/200) L

(10*200)/2 = L

1000 = L

Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:

W = 15 - (1/200) L

W = 15 - (1/200) 1000

W = 10

Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers

7 0
3 years ago
Other questions:
  • A hot air balloon has a mass of 300 k gincluding the basket. The hot air inside the balloon weighs 17,000 N. Determine the maxim
    13·1 answer
  • Three kilograms of argon (Ar) changes from an initial volume and a temperature of 298K to (a) four times the volume and a temper
    10·1 answer
  • Skateboard falls with force of weight pulling downwards with 53 Newton’s accelerating at a rate of 9.81m/s what’s the mass of th
    6·1 answer
  • A ramp is used to load furniture onto a moving truck. The person does 1240 J of work pushing
    14·1 answer
  • Scientists use laser range-finding to measure the distance to the moon with great accuracy. A brief laser pulse is fired at the
    11·1 answer
  • 100 Points
    14·1 answer
  • A 19.0 g sample of liquid methane is heated at a constant pressure of 1 atm from a temperature of 109.1 K to a temperature of 18
    12·1 answer
  • Apply: The earth's gravity is pulling on you. Are you pulling on the earth? Explain your
    9·1 answer
  • How do you think the switch controls the flow of current to the light?
    7·1 answer
  • (b) Can the speed of a rocket exceed the exhaust speed of the fuel? Explain.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!