In order to read the publications of his peers, or read his own notes of the work
that he did on the previous day, or find his coffee mug on his desk in the lab, the
research scientist must arrange to have each of them illuminated with visible
wavelengths of light, and then he must catch the light reflected from each of them
with his eyes.
This instrument is called a spring scale.
The object's speed will not change.
In fact, after the astronaut throws the object, no additional forces will act on it (since the object is in free space). According to Newton's second law:

where the first term is the resultant of the forces acting on the body, m is the mass of the object and a its acceleration, we see that if no forces act on the object, then the acceleration is zero. Therefore, the acceleration of the object is zero, and its velocity remains constant.
Answer:
Mass is the quantitative measure of inertia of any object.
Explanation:
The object that have largest mass will have largest inertia as well as largest momentum.
A wave is a disturbance that moves along a medium from one end to the other. If one watches an ocean wave moving along the medium (the ocean water), one can observe that the crest of the wave is moving from one location to another over a given interval of time. The crest is observed to cover distance. The speed of an object refers to how fast an object is moving and is usually expressed as the distance traveled per time of travel. In the case of a wave, the speed is the distance traveled by a given point on the wave (such as a crest) in a given interval of time. In equation form,