Answer:
I would have to go with A, or maybe....yea A
If Juan used a Celsius thermometer, it would tell him the Celsius temperature.
If he added 273 to that number, he'd have the "absolute" or Kelvin temperature.
Answer:
6.03 mV
Explanation:
length of solenoid, L = 2 m, N = 12000, di/dt = 40 A/s,
Magnetic field due to solenoid
B = μ0 n i = μ0 N i / L
dB/dt = μ0 N / L x di / dt
dB /dt = (4 x 3.14 x 10^-7 x 12000 x 40) / 2 = 0.3 T/s
Induced emf, e = rate of change of magnetic flux
e = dΦ / dt = A x dB / dt
e = 3.14 x 0.08 x 0.08 x 0.3 = 6.03 x 10^-3 V = 6.03 mV
Answer:
1.85c
Explanation:
a photon moves at c, the electron is moving at 0.85c, and since they are moving in opposing directions, the relative speed would be 1.85c
Answer:
(a) Kav Ne = Kav Kr = 7.29x10⁻²¹J
(b) v(rms) Ne= 659.6m/s and v(rms) Kr= 323.7m/s
Explanation:
(a) According to the kinetic theory of gases the average kinetic energy of the gases can be calculated by:
(1)
<em>where
: is the kinetic energy, k: Boltzmann constant = 1.38x10⁻²³J/K, and T: is the temperature </em>
<u>From equation (1), we can calculate the</u><u> average kinetic energies for the krypton and the neon:</u>
(b) The rms speeds of the gases can be calculated by:
<em>where m: is the mass of the gases and
: is the root mean square speed of the gases</em>
For the neon:
For the krypton:
Have a nice day!