Complete Question
For each of the following scenarios, describe the force providing the centripetal force for the motion:
a. a car making a turn
b. a child swinging around a pole
c. a person sitting on a bench facing the center of a carousel
d. a rock swinging on a string
e. the Earth orbiting the Sun.
Answer:
Considering a
The force providing the centripetal force is the frictional force on the tires \
i.e
where is the coefficient of static friction
Considering b
The force providing the centripetal force is the force experienced by the boys hand on the pole
Considering c
The force providing the centripetal force is the normal from the bench due to the boys weight
Considering d
The force providing the centripetal force is the tension on the string
Considering e
The force providing the centripetal force is the force of gravity between the earth and the sun
Explanation:
Hello,
I'd be glad to help.
Momentum = (mass) times (speed)
= (75 kg) x (18 m/s)
= 1,350 kg-m/s .
Hope this helps
The answer would be C: Rheostat. :)
Answer:
a} <u>Infrared radiant heaters.</u>
<u>b} Fan heaters.</u>
Explanation:
I hope this is okay, should I give more.
Answer:
Explanation:
GIVEN
diameter = 15 fm =m
we use here energy conservation
there will be some initial kinetic energy but after collision kinetic energy will zero
on solving these equations we get kinetic energy initial
J ..............(i)
That is, the alpha particle must be fired with 35.33 MeV of kinetic energy. An alpha particle with charge q = 2 e
and gains kinetic energy K =e∆V ..........(ii)
by accelerating through a potential difference ∆V
Thus the alpha particle will
just reach the nucleus after being accelerated through a potential difference ∆V
equating (i) and second equation we get
e∆V = 35.33 Me V