Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
C. Lack of mates. If they cannot reproduce enough, their size will reduce.
Answer:
C
Explanation:
The increase in the distance between equilibrium positions for the vibrating atoms.
Explanation:
Buoyancy force is equal to the weight of the displaced fluid:
B = ρVg
where ρ is the density of the fluid,
V is the volume of the displaced fluid,
and g is the acceleration due to gravity.
The fluid is water, so ρ = 1000 kg/m³.
The volume displaced is that of a sphere with radius 2 m:
V = 4/3 π r³
V = 4/3 π (2 m)³
V ≈ 33.5 m³
The buoyancy force is therefore:
B = (1000 kg/m³) (33.5 m³) (9.8 m/s²)
B ≈ 328,400 N
Round as needed.