Answer: If the woodpecker drums upon a tree 5 times in one second, then the frequency is 5 Hz; each drum must endure for one-fifth a second, so the period is 0.2 s.
I'm pretty sure that the "block" of which you speak is one in a pattern
of them that covers the drawing you have of the rectangle, and now
I need to explain something to you:
The REASON for printing that drawing next to the question that you
partially copied is that the drawing has information that's needed to
answer the question with, and rather than repeat all that information
in the question, it just says "LOOK AT THE DRAWING !"
In fact, the whole point of the question may not be just to remind you of
what "perimeter" means. It's more likely that the purpose of this problem
is to make you pick the information you need off of a drawing.
Either way, if you'll kind of "read between the lines" of the part of the
question that you DID copy, it should be pretty obvious to you that nobody's
going nowhere in the direction of a solution without SEEing the drawing.
So my bottom-line conclusion regarding a solution for this problem is:
Not possible with the given information.
centre of square disrance to each corner found by Pythagoras' theorem.
coulombs law used to clculate field of each charge at centre
fields added vectorially for res
Sound—energy<span> we can hear—travels only so far before it soaks away into the world around us. Until electrical </span>microphones<span>were invented in the late 19th century, there was no satisfactory way to send </span>sounds<span> to other places. You could shout, but that carried your words only a little further. You couldn't shout in New York City and make yourself heard in London. And you couldn't speak in 1715 and have someone listen to what you said a hundred years later! Remarkably, such things are possible today: by converting sound energy into electricity and information we can store, microphones make it possible to send the sounds of our voices, our music, and the noises in our world to other places and other times. How do microphones work? Let's take a closer look!</span>
Answer: a, c, and g
Explanation:
Buoyant Force is an upward force acting on submerged object equal to weight of fluid displaced by the submerged object.
If no part is submerged (V = 0) that is volume. Therefore there is Zero Buoyant Force.
Fully submerged produces greatest buoyant force since greatest amount of fluid was displaced.
Whenever it is fully submerged it will have the greatest buoyant force.
Buoyant Force DOES NOT Depend on Depth
A fully submerged object displaces its volume in fluid
A floating object displaces its weight in fluid.