long does it take to boil away 2.40 kg of the liquid.
Boiling point of He is 
Latent heat of vapourization 
Power of electrical heater 
mass of liquid is 
amount of heat required to boil

Power 

The heat or energy that is absorbed or released during a substance's phase shift is known as latent heat. It could go from a solid to a liquid or from a liquid to a gas, or vice versa. Enthalpy, a characteristic of heat, is connected to latent heat.
The heat that is used or lost as matter melts and transitions from a solid to a fluid form at a constant temperature is known as the latent heat of fusion.
Due to the fact that during softening the heat energy anticipated to transform the substance from solid to fluid at air pressure is the latent heat of fusion and that the temperature remains constant during the process, the "enthalpy" of fusion is a latent heat. The enthalpy change of any quantity of material during dissolution is known as the latent heat of fusion.
For learn more about Latent heat of vaporization, visit: brainly.com/question/14980744
#SPJ4
Answer:
A heat engine is a device that converts internal energy into work. Internal energy is increased by the addition of heat. The efficiency of a heat engine is a measurement of how efficiently it works. Efficiency compares the amount of useful energy extracted from a process to the total energy input. The heat engine will be more efficient if the percentage is higher.
Explanation:
It's the energy your body spends to just keep you breathing and your heart beating ... just being alive, without trying to DO anything.
Bbhjjjhfffgggtffffrttyyhhhhhhhh
Answer:
P = 40.7kPa
Explanation:
To find the pressure on a surface 6 meter below you use the following formula, which takes into account the heights in which pressures are measured and also the density of the fluid and the gravitational acceleration:
(1)
P2: pressure for a height of -6 m = ?
P1: pressure for a height of -2 m = 1.5kPa = 1500 Pa
ρ: density of water = 1000kg/m^3
g: gravitational acceleration = 9.8 ms^2
y2: -6m
y1: -2m
(the height is measure from the water level, because of that, the heights are negative)
You solve the equation (1) for P1:
(2)
Next, you replace the values of all variables in equation (2):

hence, the pressure on a surface 6 m below the water level is 40.7kPa