The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
<span>What I have here is exactly the same problem, however, with the time changed to 19 mins:
metabolic energy = metabolic power*time = 1.150*19*60 = 1.311 kJ..corresponding to 1.311/4.186 = 313,2 Cal or kcal
If we reasonably assume a metabolic eff.cy of 20%, it means we need to assume food for 1500 Cal approx.
Just plug the value t=15min to the equation and you will surely get the correct answer.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
drought, floods, rip currents, tropical cyclones, wildfires
Explanation:
right on edge
The answers include the following:
- The unit of length most suitable for measuring the thickness of a cell phone is a meter.
- The unit of length most suitable for measuring the height of a backyard tree is a meter.
<h3>What is Meter?</h3>
This is defined as the standard unit for measuring the length of a body and is denoted as m.
Height is a vertical type of length which is why meter was chosen as the most appropriate choice.
Read more about Meter here brainly.com/question/1578784
#SPJ1