Answer:
I think you use sig figs in percent error.
The nuclei of atoms become unstable when the repelling forces of the protons cannot be balanced by the number of neutrons in the nucleus. It then re-arranges itself randomly to a more stable configuration by emitting any of a series of particles. During radioactive decay, an atom does not collapse.
Since an atom is mostly empty space - that is it’s nucleus is relatively distant from the electron shells so, in the presence of extreme forces such as gravity inthe collapse of a large star, the inward pressures on the atom overcome the natural balance of the atomic structure and the ‘empty space’ disappears as nuclei are mashed together by the intense pressures and a neutron star is formed. Under even more external pressure, even the neutron star can collapse to form a black hole.
Answer:
pH = 12.65
Explanation:
From the given information:
number of moles =mass in gram / molar mass
number of moles of KOH = mass of KOH / molar mass of KOH
number of moles of KOH = 0.251 g / 56.1 g/mol = 0.004474 mol
For solution :
number of moles = Concentration × volume
concetration = number of moles/ volume
concetration = 0.004474 mol / 0.100 L
concetration = 0.04474 M
We know that 1 moles KOH result into 1 mole OH⁻ ions
Therefore, Molarity of OH⁻ = 0.04474 M
Now,
pOH = -log[OH⁻]
pOH = -log (0.04474) M
pOH = 1.35
Similarly,
pH + pOH = 14
pH = 14 - pOH
pH = 14 - 1.35
pH = 12.65
There are some standard numbers that help us describe the structure of an atom and help us categorize them. Those are the atomic number, the mass number and the numbers of electrons in an atom (or ion). Atoms are electrically neutral, hence they have the same number of protons as electrons. If an atom has a charge and has thus become an ion, it is because electrons joined it or left. For example in this case, since the ion has +2 charge, 2 electrons left it and thus the ion has 4 electrons (2 electrons less than its protons). The mass number is the sum of the protons and neutrons of an atom (that are in the nucleus). In this case, this yields a mass number of 13 for this ion. The atomic number of an atom (or ion) is the total number of protons in the nucleus. Protons do not leave the nucleus except for radioactive reactions and thus the atomic number of an atom (or ion) does not change in chemical reactions. In this case, the ion has an atomic number of 6.