Answer:
(a) 8 V, (b) 144000 V, (c) 2 x 10^(-8) C
Explanation:
(a) charge, q = 5 μC , Work, W = 40 x 10-^(-6) J
The electric potential is given by
W = q V

(b)
charge, q = 8 x 10^(-6) C, distance, r = 50 cm = 0.5 m
Let the potential is V.

(c)
Work, W = 8 x 10^(-5) J, Potential difference, V = 4000 V
Let the charge is q.
W= q V

Let current be I, charge be Q and time be t.
Here we are provided with,
I = 0.72A
t = 4s / 60s / 180s / 7s / 0.5s
We know,
I = Q/t
Case I
---------
When, t = 4s
0.72 = Q/4
Q = 0.72 * 4 = 2.88C
Case II
----------
When, t = 60s
0.72 = Q/60
Q = 0.72 * 60 = 43.2C
Case III
-----------
When, t = 180s
0.72 = Q/180
Q = 0.72 * 180 = 129.6C
Case IV
-----------
When, t = 7s
0.72 = Q/7
Q = 0.72 * 7 = 5.04C
Case V
----------
When, t = 0.5s
0.72 = Q/0.5
Q = 0.72 * 0.5 = 0.36C
By working with percentages, we want to see how many inches is the center of gravity out of the limits. We will find that the CG is 1.45 inches out of limits.
<h3>What are the limits?</h3>
First, we need to find the limits.
We know that the MAC is 58 inches, and the limits are from 26% to 43% MAC.
So if 58 in is the 100%, the 26% and 43% of that are:
- 26% → (26%/100%)*58in = 0.26*58 in = 15.08 in
- 43% → (43%/100%)*58in = 0.43*58 in = 24.94 in.
But we know that the CG is found to be 45.5% MAC, then it measures:
(45.5%/100%)*58in = 0.455*58in = 26.39 in
We need to compare it with the largest limit, so we get:
26.39 in - 24.94 in = 1.45 in
This means that the CG is 1.45 inches out of limits.
If you want to learn more about percentages, you can read:
brainly.com/question/14345924
<h3><u>Answer;</u></h3>
- A moving electric charge creates a magnetic field at all points in the surrounding region.
- An electric current in a conductor creates a magnetic field at all points in the surrounding region.
- A permanent magnet creates a magnetic field at all points in the surrounding region.
<h3><u>Explanation;</u></h3>
- A magnetic field can be created by running electricity through a wire. All magnetic fields are created by moving charged particles. it is important to also note that charged particles create magnetic fields only when they are moving.
- The strength of the magnetic field generated or created is proportional to the amount of current flowing through the wire. Thus, increasing the current increases the strength of the magnetic field.