1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
3 years ago
11

which tool would you use to measure the amount of rainfall? a. graduated cylinder b. stopwatch c. scale d. thermometer

Physics
2 answers:
labwork [276]3 years ago
7 0

A graduated cylinder


Nat2105 [25]3 years ago
6 0
A. graduated cylinder
You might be interested in
. Two identical vehicles traveling at the same speed are made to collide with barriers in an insurance company collision test. T
Serggg [28]

Answer:

F₁ / F₂ = 10

therefore the first out is 10 times greater than the second barrier

Explanation:

For this exercise let's use the relationship between momentum and momentum.

         I = F t = Δp

in this case the final velocity is zero

        F t = 0 -m v₀

        F = m v₀ / t

in order to answer the question we must assume that the two vehicles have the same mass and speed

concrete barrier

        F₁ = -p₀ / 0.1

        F₁ = - 10 p₀

barrier collapses

         F₂ = -p₀ / 1

let's look for the relationship of the forces

        F₁ / F₂ = 10

therefore the first out is 10 times greater than the second barrier

5 0
2 years ago
11) We are past the year 1990:<br> A.) Observation<br> B.) Inference
Sliva [168]
A an observation hehdhhdhdhdhdhhdhdhdhdhdb
7 0
3 years ago
Read 2 more answers
The water in a river flows uniformly at a constant speed of 2.50 m/s between parallel banks 80.0 m apart. You are to deliver a p
NISA [10]

Answer:

a)  The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) 133.33 m

c) 53.13°

d) 106.67 m

Explanation:

a) The swimmer should travel perpendicular to the bank to minimize the spent in getting to the other side.

b) velocity = distance * time

Let the velocity of the swimmer be v_{s} = 1.5 m/s

The separation of the two sides of the river, d = 80 m

The time taken by the swimmer to get to the other end of the river bank,

t = \frac{d}{v_{s} }

t = 80/1.5

t = 53.33 s

The swimmer will be carried downstream by the river through a distance, s

Let the velocity of the river be v_{r} = 2.5 m/s

S = v_{r} t

S = 53.33 * 2.5

S = 133.33 m

c) To minimize the distance traveled by the swimmer, his resultant velocity must be perpendicular to the velocity of the swimmer relative to water

That is ,

cos \theta = \frac{v_{s} }{v_{r} } \\cos \theta = 1.5/2.5\\cos \theta = 0.6\\\theta = cos^{-1} 0.6\\\theta = 53.13^{0}

d) Downstream velocity of the swimmer, v_{y} = v_{s} sin \theta\\

v_{y} = 1.5 sin 53.13\\v_{y} = 1.2 m/s

The vertical displacement is given by, y = v_{y} t

80 = 1.2 t

t = 80/1.2

t = 66.67 s

the horizontal speed,

v_{x} = 2.5 - 1.5cos53.13\\v_{x} = 1.6 m/s

The downstream horizontal distance of the swimmer, x = v_{x} t

x = 1.6 * 66.67

x = 106.67 m

7 0
3 years ago
You have been hired as a technical consultant for an early-morning cartoon series for children to make sure that the science is
katen-ka-za [31]

The initial potential energy of the wagon containing gold boxes will enable

it roll down the hill when cut loose.

The Lone Ranger and Tonto have approximately <u>5.1 seconds</u>.

Reasons:

Mass wagon and gold = 166 kg

Location of the wagon = 77 meters up the hill

Slope of the hill = 8°

Location of the rangers = 41 meters from the canyon

Mass of Lone Ranger, m₁ = 65 kg

Mass of Tonto m₂ = 66 kg

Solution;

Height of the wagon above the level ground, h = 77 m × sin(8°) ≈ 10.72 m

Potential energy = m·g·h

Where;

g = Acceleration due to gravity ≈ 9.81 m/s²

Potential energy of wagon, P.E. ≈ 166 × 9.81 × 10.72 = 17457.0912

Potential energy of wagon, P.E. ≈ 17457.0912 J

By energy conservation, P.E. = K.E.

K.E. = \mathbf{\dfrac{1}{2} \cdot m \cdot v^2}

Where;

v = The velocity of the wagon a the bottom of the cliff

Therefore;

\dfrac{1}{2} \times 166 \times v^2 = 17457.0912

v = \sqrt{\dfrac{17457.0912}{\dfrac{1}{2} \times 166} } \approx 14.5

Velocity of the wagon, v ≈ 14.5 m/s

Momentum = Mass, m × Velocity, v

Initial momentum of wagon = m·v

Final momentum of wagon and ranger = (m + m₁ + m₂)·v'

By conservation of momentum, we have;

m·v = (m + m₁ + m₂)·v'

\therefore v' = \mathbf{ \dfrac{m \cdot v}{(m + m_1 + m_2)  }}

Which gives;

\therefore v' = \dfrac{166 \times 14.5}{(166 + 65 + 66)  } \approx 8.1

The velocity of the wagon after the Ranger and Tonto drop in, v' ≈ 8.1 m/s

Time = \dfrac{Distance}{Velocity}

\mathrm{The \ time \ the\ Lone \  Ranger \  and  \ Tonto \  have,  \ t} = \dfrac{41 \, m}{8.1 \, m/s} \approx 5.1 \, s

The Lone Range and Tonto have approximately <u>5.1 seconds</u> to grab the

gold and jump out of the wagon before the wagon heads over the cliff.

Learn more here:

brainly.com/question/11888124

brainly.com/question/16492221

5 0
2 years ago
A 6- F capacitor is charged to 90 V and is then connected across a 700- resistor. What is the initial charge on the capacitor
Lorico [155]

Answer:

540C.

Explanation:

A capacitor of capacitance C when charged to a voltage of V will have a charge Q given as follows;

Q = CV          ----------(i)

From the question, the initial charge on the capacitor is the charge on it before it was connected to the resistor. In other words, the initial charge on the capacitor will have a maximum value which can be calculated using equation (i) above.

Where;

C = 6F

V = 90V

Substitute these values into equation (i) as follows;

Q = 6 x 90

Q = 540 C

Therefore, the initial charge on the capacitor is 540C.

7 0
2 years ago
Other questions:
  • Which object has the most gravitational potential energy? Select the correct answer below:
    8·1 answer
  • An athlete with mass m running at speed v grabs a light rope that hangs from a ceiling of height h and swings to a maximum heigh
    12·1 answer
  • 1) A net force of 75.5 N is applied horizontally to slide a 225 kg crate across the floor.
    9·1 answer
  • Noah drops a rock with a density of 1.73 g/cm3 into a pond. Will the rock float or sink? Explain your answer.
    10·2 answers
  • What is the velocity of an object that has a momentum of 4,000 kg-m/s and a mass of 115 kg? Round to the nearest hundredth.
    5·2 answers
  • Describe how Rutherford's experiments changed the accepted scientific model of the atom.
    9·1 answer
  • Hat processes lead to glacial erosion ?
    13·1 answer
  • What is the entropy of a closed system in which 28 distinguishable grains of sand are distributed among 1000 distinguishable equ
    10·1 answer
  • This table shows the mass and volume of four different objects.
    13·2 answers
  • Gregor Mendel finished his pea plant experiments in 1863 and published his results in 1866. However, few scientists saw Mendel's
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!