Answer:
Current = 3 Amperes
Explanation:
Given the following data;
Quantity of charge = 6 C
Time = 2 seconds
To find how many amps are moving through this wire;
Mathematically, the quantity of charge passing through a conductor is given by the formula;
Quantity of charge = current * time
Substituting into the formula, we have;
6 = current * 2
Current = 6/2
Current = 3 Amperes
To solve the problem it is necessary to use Newton's second law and statistical equilibrium equations.
According to Newton's second law we have to

where,
m= mass
g = gravitational acceleration
For the balance to break, there must be a mass M located at the right end.
We will define the mass m as the mass of the body, located in an equidistant center of the corners equal to 4m.
In this way, applying the static equilibrium equations, we have to sum up torques at point B,

Regarding the forces we have,

Re-arrange to find M,



Therefore the maximum additional mass you could place on the right hand end of the plank and have the plank still be at rest is 16.67Kg
Answer:
Motivation is the process that initiates, guides, and maintains goal-oriented behaviors.
If all the energy she put into bending the bow is completely
transmitted to the arrow, then the arrow has the 100 joules
of kinetic energy when it leaves the bow.
Kinetic energy = (1/2) (mass) (speed)²
100 J = (1/2) (0.5 kg) (speed²)
Divide each side by 0.25 kg: 100 J / 0.25 kg = speed²
[ joule ] = [ newton-meter ] = kg-m²/sec²
100 kg-m²/sec² / 0.25 kg = speed²
400 m²/sec² = speed²
Take the square root of each side: speed = √400 m/s
20 m/s
(about 44.7 mph)