1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna11 [192]
3 years ago
5

Please any one know how to find the unit hydrograph ????!!!!!!!!!!! its important

Engineering
1 answer:
kirill115 [55]3 years ago
8 0

Answer:

roughly 13,or 12, or 11

Explanation:

You might be interested in
Chemical engineering got is unofficial start around the time of the __________ __________ ________.
Gre4nikov [31]

Answer:

Option A,  World War II

Explanation:

During the period of industrial revolution around 1915-25, the chemical engineering has taken a new shape. During this period (i.e around the world war I), there was rise in demand for  liquid fuels, synthetic fertilizer, and other chemical products. This lead to development of chemistry centre in Germany . There was rise in use of synthetics fibres and polymers. World war II saw the growth of catalytic cracking, fluidized beds, synthetic rubber, pharmaceuticals production, oil & oil products, etc. and because of rising chemical demand, chemical engineering took a new shape during this period

Hence, option A is the right answer

4 0
3 years ago
A certain part of the cast iron piping of a water distribution system involves a parallel section. Both parallel pipes have a di
Bezzdna [24]

Answer :

<h3>Flow rate in pipe B is = 0.3094 \frac{m^{3} }{s}</h3>

Explanation:

Given :

Length of pipe A L_{A}  = 1500 m

Length of pipe B L_{B} = 2500 m

Flow rate through pipe A Q_{A}  = 0.4 \frac{m^{3} }{s}

Diameter of pipe D = 30 \times 10^{-2} m

Velocity from pipe A,

  V _{A} = \frac{Q_{A} }{A}

  V _{A} = \frac{0.4 \times 4 }{\pi ( 30 \times 10^{-2} )^{2}  }

  V_{A}  = 5.66 \frac{m}{s}

Here, head loss is same because height is same.

    h_{a} = h_{b}

L_{A} V_{A} ^{2} = L_{B}  V_{B} ^{2}

V_{B} = \sqrt{\frac{1500}{2500}}    (5.66)

V_{B} = 4.38 \frac{m}{s}

Now rate of flow from pipe B is,

Q_{B}  = V_{B} A

Q_{B}  = \frac{\pi }{4}  (0.3)^{2} \times 4.38

Q_{B} = 0.3094 \frac{m^{3} }{s}

4 0
3 years ago
Air is compressed adiabatically from p1 1 bar, T1 300 K to p2 15 bar, v2 0.1227 m3 /kg. The air is then cooled at constant volum
sashaice [31]

Answer:

Work done for the adiabatic process = -247873.6 J/kg = - 247.9 KJ/kg

Heat transfer for the constant volume process = - 244.91 KJ/kg

Explanation:

For the first State,

P₁ = 1 bar = 10⁵ Pa

T₁ = 300 K

V₁ = ?

Second state

P₂ = 15 bar = 15 × 10⁵ Pa

T₂ = ?

V₂ = 0.1227 m³/kg

Third state

P₃ = ?

T₃ = 300 K

V₃ = ?

We require the workdone for step 1-2 (which is adiabatic)

And heat transferred for steps 2-3 (which is isochoric/constant volume)

Work done for an adiabatic process is given by

W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)

where γ = ratio of specific heats = 1.4 for air since air is mostly diatomic

K = PVʸ

Using state 2 to calculate for k

K = P₂V₂ʸ = (15 × 10⁵)(0.1227)¹•⁴ = 79519.5

We also need V₁

For an adiabatic process

P₁V₁ʸ = P₂V₂ʸ = K

P₁V₁ʸ = K

(10⁵) (V₁¹•⁴) = 79519.5

V₁ = 0.849 m³/kg

W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)

W = 79519.5 [(0.1227)⁻⁰•⁴ - (0.849)⁻⁰•⁴]/(1 - 1.4)

W = (79519.5 × 1.247)/(-0.4) = - 247873.6 J/kg = - 247.9 KJ/kg

To calculate the heat transferred for the constant volume process

Heat transferred = Cᵥ (ΔT)

where Cᵥ = specific heat capacity at constant volume for air = 0.718 KJ/kgK

ΔT = T₃ - T₂

We need to calculate for T₂

Assuming air is an ideal gas,

PV = mRT

T = PV/mR

At state 2,

V/m = 0.1227 m³/kg

P₂ = 15 bar = 15 × 10⁵ Pa

R = gas constant for air = 287.1 J/kgK

T₂ = 15 × 10⁵ × 0.1227/287.1 = 641.1 K

Q = 0.718 (300 - 641.1) = - 244.91 KJ/kg

7 0
3 years ago
If the feedforward path of a control system contains at least one integrating element, then the output continues to change as lo
Thepotemich [5.8K]

Answer:

The attached system shows that there’s an integrator between the point where disturbance enters the system and error measuring element. A any time when R(s)=0 then

\frac {C(s)}{D(s)}=\frac {G(s)}{1+G_c(s)G(s)} and considering that E(s)=D(s)-G_c(s)C(s) then

\frac {E(s)}{D(s)}=1-(\frac {C(s)}{D(s)})G_c(s)

\frac {E(s)}{D(s)}=1-(\frac {G(s)}{1+G_c(s)D(s)})G_c(s)

\frac {E(s)}{D(s)}=\frac {1}{1+G_c(s)G(s)}

E(s)=\frac {D(s)}{1+G_c(s)G(s)}

For ramp disturbance d(t)=at

D(s)=\frac {a}{s^{2}} therefore, the steady state error is given by

e(\infty)= \lim_{s \to 0} s E(s)

e(\infty)= \lim_{s \to 0} s [\frac {D(s)}{1+G_c(s)G(s)}]

e(\infty)= \lim_{s \to 0} s [\frac {a}{s^{2}+s^{2}G_c(s)G(s)}]

e(\infty)= \lim_{s \to 0} s [\frac {a}{s+sG_c(s)G(s)}]

e(\infty)= \lim_{s \to 0} s [\frac {a}{sG_c(s)G(s)}]

Whenever G_c(s) has a double intergrator, the error e(\infty) becomes zero

3 0
3 years ago
Select the correct answer.
Ulleksa [173]
The answer is A. Immediately inform her colleague
4 0
3 years ago
Other questions:
  • provides steady-state operating data for a solar power plant that operates on a Rankine cycle with Refrigerant 134a as its worki
    12·1 answer
  • Air is drawn from the atmosphere into a turbomachine. At the exit, conditions are 500 kPa (gage) and 130oC. The exit speed is 10
    8·1 answer
  • . Steam is to be condensed from saturated vapor to saturated liquid in the condenser of a steam power plant at a temperature of
    5·1 answer
  • Two materials are considered _______ if one material’s property degraded another.
    14·2 answers
  • A 500 turn coil is wound on an iron core. When a 120Vrms 60Hz voltage is applied to the coil, the current is 1A rms. Neglect the
    13·2 answers
  • Air at 105 kPa and 37° C flows upward through a6-cm-diameter inclined duct at a rate of 65 L/s. The duct diameter is then reduce
    12·1 answer
  • Consider a standard room thermostat. Determine the sensor, transducer, output, and control stages for this measurement system.
    13·1 answer
  • According to the
    11·1 answer
  • What does kichfoff's currebt law​
    15·1 answer
  • Why is using the proper joining technique important? What could go wrong if the wrong joining technique is used?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!