Answer:
Explanation:
(a) Firstly, caesium abd potassium are both in Group 1 of the periodic table. Group 1 metals (also called alkali metals) are the most reactive metals of the periodic table. Caesium is more reactive than Potassium because it has a higher electropositivity than Potassium. Electropositivity is the tendency of a metal to donate electron(s) to form a cation. Electropositivity increases down the group; this is because it is easier for atoms to loose electrons on the outermost shell that are far away from the central nucleus as against atoms whose outermost electrons are closer to the central nucleus. <u>Thus, the more "bulky" an atom is, the farther it's outermost electrons (valence electrons) get from the central nucleus and the easier it is to lose the outermost electron(s). And the easier it is for the valence electron(s) to be removed, the more reactive the atom would be and vice-versa.</u>
Caesium is more reactive than potassium because it is more bulky than potassium, with an atomic number of 55, while potassium has an atomic number of 19.
NOTE: The closer an electron is to the nucleus, the more difficult it is to be removed from it's shell.
(b) i. Formula for Caesium Nitrate:
Symbol for Caesium is Cs and Nitrate is NO₃⁻.
Cs⁺ + NO₃⁻ ↔ CsNO₃
Formula for Caesium Nitrate is CsNO₃
ii. Formula for Caesium sulphate
Symbol for caesium is Cs and Sulphate is SO₄²⁻
Cs⁺ + SO₄²⁻ ↔ Cs₂SO₄
Formula for Caesium sulphate is Cs₂SO₄
NOTE: When writing the formulae, the charges would be exchanged to form the subscript as seen on the product sides above.
The molarity of the potassium acetate solution given the data is 1.584 M
<h3>What is molarity? </h3>
This is defined as the mole of solute per unit litre of solution. Mathematically, it can be expressed as:
Molarity = mole / Volume
<h3>How to determine the mole of CH₃COOK</h3>
- Mass of CH₃COOK = 19.4 g
- Molar mass of CH₃COOK = 98 g/mol
- Mole of CH₃COOK =?
Mole = mass / molar mass
Mole of CH₃COOK = 19.4 / 98
Mole of CH₃COOK = 0.198 mole
<h3>How to determine the molarity of CH₃COOK</h3>
- Mole of CH₃COOK = 0.198 mole
- Volume = 125 mL = 125 / 1000 = 0.125 L
- Molarity of CH₃COOK = ?
Molarity = mole / Volume
Molarity of CH₃COOK = 0.198 / 0.125
Molarity of CH₃COOK = 1.584 M
Learn more about molarity:
brainly.com/question/15370276
#SPJ4
Answer:
remove product
Explanation:
Removing the product will always shift the equilibrium to the right. This is based on the Le Chatelier's principle which states that "if any of the conditions of a system in equilibrium is changed, the system will adjust itself in order to annul the effect of the change".
- If a system at equilibrium is disturbed, by changing the concentration of one of the substances all the concentrations will change until a new equilibrium point is reached.
- Removing the product will increase the concentration of the species on the left hand side, the equilibrium will shift to the right.