Answer:
41.41 m
Explanation:
When force F is applied on an object of mass m for time t and velocity v₁ is created
F X t = mv₁
F = 95 N , t = .53 s, m = 655 kg
95 x .53 = 655 x v₁
v₁ = .0768 m/s
Applying conservation of momentum on man and satellite
m₁ v₁ = m₂v₂
655 x .0768 = 82 xv₂
v₂ = .6134 m/s
their relative velocity
= .6134 + .0768
= .6902 ( they are in opposite direction )
After 60 second distance between them
= 60 x .6902 m
= 41.41 m
Answer:
E_interior = 0
Explanation:
As the sphere is metallic, the electrical charges are distributed on its surface, as far away as possible from each other.
If we apply Gauss's law, as the charge is on the surface, when drawing a spherical Gaussian surface, we see that there is no charge inside, therefore there is no electric field inside the metallic sphere.
E_interior = 0
Answer:
Vi = 94.64 m/s
Explanation:
I order to find out the initial velocity of the object, we can use third equation of motion:
2ah = Vf² - Vi²
where,
a = acceleration = -9.8 m/s²
h = maximum height covered by object = 460 m - 3 m = 457 m
Vf = Final Velocity = 0 m/s (since, object momentarily stops at highest point)
Vi = Initial Velocity = ?
Therefore,
2(-9.8 m/s²)(457 m) = (0 m/s)² - Vi²
Vi = √8957.2 m²/s²
<u>Vi = 94.64 m/s</u>
A) The biggest astronomical object is the Universe, which contains billions of galaxies among which there is the Milky Way.
The Milky Way contains thousands of planetary systems, among which the Solar System.
The Solar System contains many <span>planets <span>(but only one star, the Sun)</span>,</span> among which there is Earth.
Therefore you can label:
A = Universe, B = Milky Way, C = Solar system, D = Earth
b) Given what we said before, you could label D also any other planet in the Solar System, therefore you can choose among Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and Neptune.