Answer:
The answer to your question is 242 ml
Explanation:
Data
HI 0.211 M Volume = x
KMnO₄ 0.354 M Volume = 24 ml
Balanced Chemical reaction
12HI + 2KMnO₄ + 2H₂SO₄ → 6I₂ + Mn₂SO₄ + K₂SO₄ + 8H₂O
Process
1.- Calculate the moles of KMnO₄ 0.354 M in 24 ml
Molarity = moles / volume (L)
moles = Molarity x volume (L)
moles = 0.354 x 0.024
moles = 0.0085
2.- From the balanced chemical reaction we know that HI and KMnO₄ react in the proportion 12 to 2. Then,
12 moles of HI --------------- 2 moles of KMnO₄
x --------------- 0.0085 moles of KMnO₄
x = (0.0085 x 12)/2
x = 0.051 moles of HI
3.- Calculate the milliliters of HI 0.211 M
Molarity = moles/volume
Volume = moles/molarity
Volume = 0.051/0.211
Volume = 0.242 L or Volume = 242 ml
<em><u>the</u></em><em><u> </u></em><em><u>number</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>neutrons</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>aluminium</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>1</u></em><em><u>4</u></em>
Answer:
The volume of a given gas sample is directly proportional to its absolute temperature at constant pressure (Charles's law). The volume of a given amount of gas is inversely proportional to its pressure when temperature is held constant (Boyle's law).
Answer:0.026ml
Explanation:
Details are found in the image attached. We must subtract the saturated vapour pressure of hydrogen gas at the given temperature from the total pressure of the hydrogen gas collected over water to obtain the actual pressure of hydrogen gas and substitute the value obtained into the general gas equation. The dry hydrogen gas has no saturated vapour pressure hence the value is substituted as given. All temperatures must be converted to Kelvin before substitution.
Answer:Phase changes require either the addition of heat energy (melting, evaporation, and sublimation) or subtraction of heat energy (condensation and freezing). ... Changing the amount of heat energy usually causes a temperature change.
Explanation: