Given :
Mass of O₂, m = 25.43 g.
To Find :
How many liters of gas will you have at STP.
Solution :
Molecular mass of O₂, M.M = 2 × 16 gram/mole
M.M = 32 gram/mole
Number of moles is given by :
n = m/M.M
n = 25.43/32 mole
n = 0.79 mole
Hence, this is the required solution.
First, draw the 2-hexene. Th is is a molecule of six carbons with a double bond in the second carbon:
CH3 - CH = CH2 - CH2 - CH2 - CH3
Secong, put one Br on the second carbon and one Br on the third carbon:
CH3 - CBr = CBr - CH2 - CH2 - CH3
Third, cis means that the two Br are placed in opposed positions, this is drawn with one Br up and the other down. So, you need to represent the position of the Br in the space:
H Br H H H
| | | | |
H - C - C = C - C - C - C - H
| | | | |
H Br H H H
The important fact to realize is that the two Br are in opposed sides of the molecule.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>
- Energy transformation includes ATP and ADP. at the point when energy is delivered, the response will in general separate a bigger particle to a more modest structure.
- For this situation, the bigger particle is ATP comprised of three phosphates bunches while ADP is just made out of two phosphate gatherings.
<h3>What is the energy source for the conversion of
ADP and ATP?</h3>
- The energy expected for the change of ADP into ATP is acquired from light during photosynthesis and from exothermic responses during cell breath in the two plants and creatures.
- ADP is produced on hydrolysis of ATP and the energy released in the process is utilised to carry out various cellular processes.
To learn more about energy release from the given link
brainly.com/question/1557907
#SPJ4