1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krok68 [10]
3 years ago
5

Three examples of highly corrosive elements.

Chemistry
1 answer:
pogonyaev3 years ago
3 0
Bromine, sodium hydroxide, sulfuric acid and hydrogen peroxide
You might be interested in
Which of these best describes the difference between the formulas for nitrogen monoxide and nitrogen dioxide? Which of these bes
Pani-rosa [81]
Nitrogen monoxide has 1 oxygen atom and
Nitrogen dioxide has 2 oxygen atoms
3 0
3 years ago
If a substance undergoes electrolysis and a brown solid forms on one electrode and a gas on the other, from this we can conclude
andrew-mc [135]

Answer:

b. a compound.

Explanation:

Electrolysis is described as a mechanism in which ionic compounds are decomposed into their elements by transmitting a direct electric current via the compound in a liquid state. At the cathode, the cations are reduced and anions at the anode are oxidized. There is an exchange between ions and atoms in the electrolysis process caused by the addition or removal between electrons from the external circuit. As per the question, the original substance is a compound because the electrolysis method is used to obtain pure elements from their respective compound.

7 0
4 years ago
Base changes phenolphthalein to pink it is true or false​
galben [10]

Answer:

It’s false

Explanation:

it could be true if the question mentioned alkaline solution

4 0
3 years ago
Read 2 more answers
The reaction of hydrogen and iodine to produce hydrogen iodide has a Kc of 54.3 at 703 K. Given the initial concentrations of H2
pentagon [3]

Answer:

[HI] = 0.7126 M

Explanation:

Step 1: Data given

Kc = 54.3

Temperature = 703 K

Initial concentration of H2 and I2 = 0.453 M

Step 2: the balanced equation

H2 + I2 ⇆ 2HI

Step 3: The initial concentration

[H2] = 0.453 M

[I2] = 0.453 M

[HI] = 0 M

Step 4: The concentration at equilibrium

[H2] = 0.453 - X

[I2] = 0.453 - X

[HI] = 2X

Step 5: Calculate Kc

Kc = [Hi]² / [H2][I2]

54.3 = 4x² / (0.453 - X(0.453-X)

X = 0.3563

[H2] = 0.453 - 0.3563 = 0.0967 M

[I2] = 0.453 - 0.3563 = 0.0967 M

[HI] = 2X = 2*0.3563 = 0.7126 M

3 0
3 years ago
Many double-displacement reactions are enzyme-catalyzed via the "ping pong" mechanism, so called because the reactants appear to
zhenek [66]

Answer:

<u>D. It will decrease by a factor of 4</u>

Explanation:

According to the question , the equation follows :

A+B\rightarrow C+D

Rate law : This states the rate of reaction is directly proportional to concentration of reactants with each reactant raised to some power which may or may not be equal to the stoichiometeric coefficient.

Rate\ \alpha [A]^{a}[B]^{b}

r=[A]^{a}[B]^{b}.................(1)

STEP": First, find out the power "a" and "b"

a+b = 3 (because it is given that the reaction follow 3rd order-kinetics)

According to question, <u><em>doubling the concentration of the first reactant causes the rate to increase by a factor of 2 means,</em></u>

r' = 2r if [A'] = 2[A]

Here [B] is uneffected means [B']=[B]

hence new rate =

r'=[A']^{a}[B']^{b}

Put the value of [A'] , [B'] and r' in the above equation:

2r=[2A]^{a}[B]^{b}...........(2)

Divide equation (1) by (2) we , get

\frac{2r}{r}=\frac{[2A]^{2}[B]^{b}}{[A]^{a}[B]^{b}}

2= 2(\frac{A}{A})^{a}\times (\frac{B}{B})^{b}

Here A and A cancel each other

B and B cancel each other

We get,

2= 2^{a}\times 1^{b}

1^b = 1 ( power of 1 = 1)

2= 2^{a}

This is possible only when a = 1

We know that : a + b = 3

1 + b = 3

b =3 -1  = 2

b = 2

Hence the rate law becomes :

r=[A]^{a}[B]^{b}

<u>r=[A]^{1}[B]^{2}.............(3)</u>

Look in the question now, it is asked to calculate the concentration of [B],if  cut in half

Hence

[B']=1/2[B]

Insert the value of [B'] in equation (3)

r'=[A]^{1}[B']^{2}

r'=[A]^{1}(\frac{1}{2}[B])^{2}

r'=\frac{1}{4}[A]^{1}[B]^{2}............(a)

But

r=[A]^{a}[B]^{b}..............(b)

Compare equation (a) and (b) , we get

new rate r' =

<u>r' = 1/4 r</u>

7 0
3 years ago
Other questions:
  • What are the most reactive metals found on the periodic table?
    13·2 answers
  • Which of the following statements about moles is correct?
    7·2 answers
  • The energy released in a nuclear reaction comes from
    5·2 answers
  • Draw the best lewis structure for the free radical, no2. what is the formal charge on the n?
    8·2 answers
  • A 25.00 mL sample of sulfuric acid solution from an automobile battery reacts completely with 87.42 mL of a 1.95 M solution of p
    9·1 answer
  • Why thre is no atmosphere in moom,?
    13·1 answer
  • A solution containing a mixture of 0.0333 M0.0333 M potassium chromate ( K2CrO4K2CrO4 ) and 0.0532 M0.0532 M sodium oxalate ( Na
    15·1 answer
  • Which is an example of a chemical reaction?
    11·1 answer
  • I need help with the question please help
    13·2 answers
  • Describe how covalent bonds form
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!