Answer:
a) 213.3 mg/L
b) 62.61 mg/L
c) 0.0225 mg/L
Explanation:
Theoretical oxygen demand (ThOD)is essentially the amount of oxygen required for the complete degradation of a given compound into the final oxidized products
a) Given:
Concentration of acetic acid,
= 200 mg/L


Based on the reaction stoichiometry:
mass of
= 60 g
mass of
= 2(32) = 64 g

b) Given:
Concentration of ethanol,
= 30 mg/L


Based on the reaction stoichiometry:
mass of
= 46 g
mass of
= 3(32) = 96 g

c) Given:
Concentration of sucrose,
= 50 mg/L


Based on the reaction stoichiometry:
mass of
= 342 g
mass of
= 12(32) = 384 g

Answer:
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
Explanation:
The activity series helps us to easily define whether or not a reaction will occur.
Elements at the top of the activity series are highly reactive and will always displace those at the bottom of the series in any reaction.
With the above information in mind, let us answer the questions given above.
Ag + NaNO₃ —> Na + AgNO₃
The above reaction will not occur because Na is higher than Ag in the activity series. Thus, Ag cannot displace Na from solution.
Pb + Mg(NO₃)₂ —> Pb(NO₃)₂ + Mg
The above reaction will not occur because Mg is higher than Pb in the activity series. Thus, Pb cannot displace Mg from solution.
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
The above reaction will occur because Mg is higher than Fe in the activity series. Thus, Mg will displace Fe from solution.
Cu + Mg(NO₃)₂ —> Cu(NO₃)₂ + Mg
The above reaction will not occur because Mg is higher than Cu in the activity series. Thus, Cu cannot displace Mg from solution.
From the above illustration, only
Mg + Fe(NO₃)₂ —> Fe + Mg(NO₃)₂
Will occur.
Answer:
it depends on the subject but i can see what i can do
Explanation:
Answer:
0.535 g
Explanation:
The reaction that takes place is:
- NaCl + AgNO₃ → AgCl + NaNO₃
First we <u>calculate how many AgNO₃ moles are there in 25.0 mL of a 0.366 M solution</u>, using the <em>definition of molarity</em>:
- Molarity = moles / liters
- moles = Molarity * liters
<em>Converting 25.0 mL to L </em>⇒ 25.0 / 1000 = 0.025 L
- moles = 0.366 M * 0.025 L = 0.00915 mol AgNO₃
Then we <u>convert AgNO₃ moles into NaCl moles</u>:
- 0.00915 mol AgNO₃ *
= 0.00915 mol NaCl
Finally we<u> convert NaCl moles into grams</u>, using its <em>molar mass</em>:
- 0.00915 mol NaCl * 58.44 g/mol = 0.535 g