Answer:
71.7 L
Explanation:
Using the ideal gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/Kmol)
T = temperature (K)
According to the information provided in this question;
P = 1 atm (STP)
V = ?
n = 3.2mol
T = 273K (STP)
Using PV = nRT
V = nRT/P
V = 3.2 × 0.0821 × 273/1
V = 71.7 L
Answer:
More sweet and cute with the little ones on the surface and a little more
Answer:
4.823 x 10^-19 J
Explanation:
Energy is calculated by E = hv where h - Planck's constant in joule.s
v - frequency.
in this particular question the wave length is 4.12 x 10^-7 m. to exhaustively use this we need a relation between wave length & frequency. c=wv where C is approximately 3 x 10^8m/s
-v = c/w = 3x10^8m/s / 4.12 x 10^-7m = 7.28 x 10^14 Hz or 1/sec
now we can simply use Planck's constant in E=hv =
(6.626 x 10^-34) x (7.28 x 10^14Hz) = 4.823 x 10^-19 J.
Answer:
60 J
Explanation:
The law of conservation of energy states that energy is neither created nor destroyed, just converted into different forms. This means the total mechanical energy of the object at point A will be the same as the total mechanical energy at point B, and the question tells us the total of that mechanical energy is 150 J. Note we are assuming no energy is lost from the system as heat.
At point B, if the potential energy is 90 J, the remainder of the 150 J total must be kinetic energy. KE = 150 J - 90 J = 60 J.
Answer is: C. H₂, molecule of hydrogen, g is c<span>hemistry abbreviations or physical state symbol for gas.</span>
<span>
Lithium (Li) is solid (s) element (metal).
Water (H</span>₂O) is liquid (l) compound or molecule.
Lithium hydroxide (LiOH) is aqueous solution (aq). It dissociates in water on lithium cation (Li⁺) and hydroxy anion (OH⁻).
<span>
</span>