The new volume when pressure increases to 2,030 kPa is 0.8L
BOYLE'S LAW:
The new volume of a gas can be calculated using Boyle's law equation:
P1V1 = P2V2
Where;
- P1 = initial pressure (kPa)
- P2 = final pressure (kPa)
- V1 = initial volume (L)
- V2 = final volume (L)
According to this question, a 4.0 L balloon has a pressure of 406 kPa. When the pressure increases to 2,030 kPa, the volume is calculated as:
406 × 4 = 2030 × V2
1624 = 2030V2
V2 = 1624 ÷ 2030
V2 = 0.8L
Therefore, the new volume when pressure increases to 2,030 kPa is 0.8L.
Learn more about Boyle's law calculations at: brainly.com/question/1437490?referrer=searchResults
It is a homogeneous mixture because you cannot see the individual components that make up the iced tea (such as the water, the molecules found in the tea leaves, etc.). Iced tea with ice in it is considered a heterogeneous mixture because you can distinguish the tea from the ice.
The factor that does not influence stream velocity is DISCHARGE.
Stream velocity refers to the speed with which the water in a stream is flowing. The factors which affect stream velocity include channel size, channel shape, turbulent flow and gradient.
Answer:
V₂ = 15.3
Explanation:
Given data:
Initial volume = 12.0 L
Initial temperature = 20°C
Final temperature =100°C
Final volume = ?
Solution:
First of all we will convert the temperature into kelvin.
20°C + 273 = 293 K
100°C + 273 = 373 K
Formula:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 12.0 L × 373 K / 293 k
V₂ = 4476 L.K /293 k
V₂ = 15.3
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Answer:
Phase changes that require a loss in energy are condensation and freezing.
Explanation: