Answer:
C. Carbon dioxide
Explanation:
Carbon dioxide is one of the end-product of combustion reactions involving many fuels today.
With the rapid increase in urbanization and technological development, man demand for energy increased tremendously. The discovery of fossil fuels paved the way for the astronomical increase in the concentration of carbon dioxide in the atmosphere. The burning of fossil fuels like coal and oil invovles the process where the carbon atoms present in these fuels combine with oxygen in the air to make CO2. This has resulted in an increase in the concentration of atmospheric carbon dioxide (CO2).
The burning fossil fuels for electricity, industry, heat, and transportation are the major sources of the emossion of carbon dioxide.
Also, the cutting down of trees for paper production, building construction and for the establishment of settlements also increase the concentration of carbon dioxide in the atmosphere. Trees are help remove carbon dioxide from the atmosphere through the process of photosynthesis. However, when these trees are cut down, carbon dioxide accumulates in the atmosphere.
Answer:
46.3g H2O
Explanation:
start by balancing it: CaC2(s) + 2H2O(g) -> Ca(OH)2(s) + C2H2(g)
then use factor label method to solve
82.4g CaC2 x (1 mol CaC2/64.10g CaC2) x (2 mol H2O/1 mol CaC2) x (18.016g H2O/1 mol H20) = 46.3g H2O
The balanced equation of the reaction is:
O3(g) + NO (g) → O2 (g) + NO2 (g)
Then the ratios of reaction is 1 mol O3 : 1 mol NO : 1 mol O2 : 1 mol NO2
If you have initially 0.05 M of O3 and 0.02 M of NO, the reaction will end when all the NO is consumed.
The by the stoichiometry 0.02 mol of O3 will be consumed in 8 seconds.
And the rate of reaction is change in concetration divided by the time.
The change in concentration in O3 is 0.02 M
Then, the rate respect O3 is 0.02 M / 8 seconds = 0.0025 M/s
Answer:
a. Approximately
.
b. Approximately
.
Explanation:
The unit of concentration "
" is equivalent to "
", which means "moles per liter."
However, the volume of both solutions were given in mililiters
. Convert these volumes to liters:
.
.
In a solution of volume
where the concentration of a solute is
, there would be
(moles of) formula units of this solute.
Calculate the number of moles of
formula units in each of the two solutions:
Solution in a.:
.
Solution in b.:
.
What volume of that
(same as
)
solution would contain that many
For the solution in a.:
.
Convert the unit of that volume to milliliters:
.
Similarly, for the solution in b.:
.
Convert the unit of that volume to milliliters:
.
Answer:
B I have taken the quiz already 90%