<span> Maths delivers! Braking distance ... If the </span>car<span> is initially travelling at u</span>m<span>/s, then the stopping distance d </span>m<span> ... the </span>speed<span> of the </span>car<span> at the </span>instant<span> the </span>brakes<span> are applied. ... An object with </span>constant acceleration<span> travels the </span>same<span> distance as it would ... We </span>start<span> with the second equation of motion:.</span>
Answer:
The climate of the earth throughout history has always been <em><u>fluctuated between hot and cold periods. </u></em>
Answer:
The distance is 
Explanation:
From the question we are told that
The wavelength of the light is 
The distance between the slit is 
The between the first and second dark fringes is 
Generally fringe width is mathematically represented as

Where D is the distance of the slit to the screen
Hence

substituting values


Answer:
the Answer Would be D
Explanation:
From what I know light travels 300,000 km/second , travels at fast speeds and travels in a straight line
1. Most PE, because PE is directly proportional to distance (height)
Height: 100 meters
Speed: 0 mph
2. Most KE, because KE is directly proportional to speed
Height: 10 meters
Speed: 40 mph
3. Most TE, average KE
Height: 10 meters
Speed: 40 mph
4. The skater gains thermal energy as she goes down the slope, because the speed of the skater increases, so it increases the total kinetic energy of the particles, and makes them vibrate faster, resulting in a higher temperature.