1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
2 years ago
9

Concept Simulation 2.3 offers a useful review of the concepts central to this problem. An astronaut on a distant planet wants to

determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of 17.4 m/s and measures a time of 12.4 s before the rock returns to his hand. What is the acceleration (magnitude and direction) due to gravity on this planet
Physics
1 answer:
Alexandra [31]2 years ago
7 0

Answer:

1.40 m/s^2

Explanation:

Given data

Velocity= 17.4 m/s

time= 12.4 seconds

We want to find the acceleration of the rock

We know that

acceleration = velocity/time

Substitute

acceleration= 17.4/12.4

acceleration=1.40 m/s^2

Hence the acceleration is 1.40 m/s^2

You might be interested in
Which level of protein structure is formed by the weak bonds between oxygen and hydrogen atoms within the polypeptide backbone.
vredina [299]

Answer:

Secondary structure

The secondary structure arises from the hydrogen bonds formed between atoms of the polypeptide backbone. The hydrogen bonds form between the partially negative oxygen atom and the partially positive nitrogen atom

8 0
2 years ago
The distance between the earth and sun is 1.5 x 108 kilometers and the speed of light is 3.00 x 108 meters per second. Calculate
butalik [34]

Answer:

time = 8.3333 minutes.

Explanation:

distance between earth and sun = 1.5 * 10^{8}km

speed of light = 3* 10^{8}m/s

convert the distance unit from km to m so we can have uniform units.

distance between earth and sun = 1.5 *10^{8}*1000m

distance between earth and sun = 1.5 * 10^{11}m

speed = distance /time

time = distance / speed

time = \frac{1.5*10^{11} }{3*10^{8} }

= 0.5*10^{3}

time =500 sec

time = 500/60 minutes

time = 8.3333 minutes.

3 0
3 years ago
May you help me answer this​
Firdavs [7]

1) See three Kepler laws below

2a) Acceleration is 2.2 m/s^2

2b) Tension in the string: 27.4 N

3a) Kinetic energy is the energy of motion, potential energy is the energy due to the position

3b) The kinetic energy of the object is 2.25 J

Explanation:

1)

There are three Kepler's law of planetary motion:

  1. 1st law: the planets orbit the sun in elliptical orbits, with the Sun located at one of the 2 focii
  2. 2nd law: a segment connecting the Sun with each planet sweeps out equal areas in equal time intervals. A direct consequence of this is that, when a planet is further from the sun, it travels slower, and when it is closer to the sun, it travels faster
  3. 3rd law: the square of the period of revolution of a planet around the sun is directly proportional to the cube of the semi-major axis of its orbit. Mathematically, T^2 \propto r^3, where T is the period of revolution and r is the semi-major axis of the orbit

2a)

To solve the problem, we have to write the equation of motions for each block along the direction parallel to the incline.

For the block on the right, we have:

M g sin \theta - T = Ma (1)

where

Mg sin \theta is the component of the weight of the block parallel to the incline, with

M = 8.0 kg (mass of the block)

g=9.8 m/s^2 (acceleration of gravity)

\theta=35^{\circ}

T = tension in the string

a = acceleration of the block

For the block on the left, we have similarly

T-mg sin \theta = ma (2)

where

m = 3.5 kg (mass of the block)

\theta=35^{\circ}

From (2) we get

T=mg sin \theta + ma

Substituting into (1),

M g sin \theta - mg sin \theta - ma = Ma

Solving for a,

a=\frac{M-m}{M+m}g sin \theta=\frac{8.0-3.5}{8.0+3.5}(9.8)(sin 35^{\circ})=2.2 m/s^2

2b)

The tension in the string can be calculated using the equation

T=mg sin \theta + ma

where

m = 3.5 kg (mass of lighter block)

g=9.8 m/s^2

\theta=35^{\circ}

a=2.2 m/s^2 (acceleration found in part 2)

Substituting,

T=(3.5)(9.8)(sin 35^{\circ}) +(3.5)(2.2)=27.4 N

3a)

The kinetic energy of an object is the energy due to its motion. It is calculated as

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

The potential energy is the energy possessed by an object due to its position in a gravitational field. For an object near the Earth's surface, it is given by

U=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the heigth of the object relative to the ground

3b)

The kinetic energy of an object is given by

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

For the object in this problem,

m = 500 g = 0.5 kg

v = 3 m/s

Substituting, we find its kinetic energy:

K=\frac{1}{2}(0.5)(3)^2=2.25 J

Learn more about acceleration and forces:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

And about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

7 0
3 years ago
A bat hits a ball; which has the greater acceleration, the bat or the ball?
MaRussiya [10]
The ball because the Kinetic Energy transfers from the bat to the ball, increasing the movement and acceleration of the ball because of the Kinetic Energy transferred from the origin force (The bat)
7 0
3 years ago
Read 2 more answers
Please, pretty please help me!
Andrews [41]

Answer:

umm

Explanation:

1223565 578633 =334675

8 0
2 years ago
Read 2 more answers
Other questions:
  • A 77 g Frisbee is thrown from a point 0.99 m above the ground with a speed of 15 m/s. When it has reached a height of 1.3 m, its
    15·1 answer
  • Laws made by the will of the people come through which body of the U.S. Government?
    13·2 answers
  • How has the use of computer and advance in technology changed healthcare industry
    13·1 answer
  • 25 POINTS FOR CORRECT ANSWER
    7·2 answers
  • List four ways of separate a mixture
    11·1 answer
  • Struggling with this. Can you help?
    14·1 answer
  • Give two example for push or pull to change the state of motion of time two examples​
    11·1 answer
  • A body of mass 2 kg at O has an initial velocity of 3m/s along OE and it is subjected to a force of 4N perpendicular to OE the d
    7·1 answer
  • At which latitude would tropical rain forests be most likely?
    15·1 answer
  • The absolute temperature of a gas is t. in order to double the rms speed of its molecules, what should be the new absloute tempe
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!