1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
9

Concept Simulation 2.3 offers a useful review of the concepts central to this problem. An astronaut on a distant planet wants to

determine its acceleration due to gravity. The astronaut throws a rock straight up with a velocity of 17.4 m/s and measures a time of 12.4 s before the rock returns to his hand. What is the acceleration (magnitude and direction) due to gravity on this planet
Physics
1 answer:
Alexandra [31]3 years ago
7 0

Answer:

1.40 m/s^2

Explanation:

Given data

Velocity= 17.4 m/s

time= 12.4 seconds

We want to find the acceleration of the rock

We know that

acceleration = velocity/time

Substitute

acceleration= 17.4/12.4

acceleration=1.40 m/s^2

Hence the acceleration is 1.40 m/s^2

You might be interested in
A4 kg bowling ball begins rolling down a at bowling alloy at 6 m/s . When it strikes the pins, it is estimated to be moving at 5
Paul [167]

Answer:

Energy lost due to friction is 22 J      

Explanation:

Mass of the ball m = 4 kg

Initially velocity of ball v = 6 m/sec

So kinetic energy of the ball KE=\frac{1}{2}mv^2

KE=\frac{1}{2}\times 4\times 6^2=72J

Now due to friction velocity decreases to 5 m/sec

Kinetic energy become

KE=\frac{1}{2}\times 4\times 5^2=50J

Therefore energy lost due to friction = 72 -50 = 22 J

8 0
3 years ago
Two protons are maintained at a separation of nm. Calculate the electric potential due to the two particles at the midpoint betw
Liono4ka [1.6K]

Answer:

The electric potential is approximately 5.8 V

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero

Explanation:

The two protons can be considered as point charges. Therefore, the electric potential is given by the point charge potential:

\displaystyle{U=\frac{q}{4\pi \epsilon_0r}} (1)

where q is the charge of the particle, \epsilon_0 the electric permittivity of the vacuum (I assuming the two protons are in a vacuum) and r is the distance from the point charge to the point where the potential is being measured. Because the electric potential is an scalar, we can simply add the contribution of the two potentials in the midpoint between the protons. Thus:

\displaystyle{U_{midpoint}=\frac{q}{4\pi \epsilon_0r}}+\frac{q}{4\pi \epsilon_0r}}=\frac{q}{2\pi \epsilon_0r}}}

Substituting the values q=1.602 \cdot10^{-19}\ C, \displaystyle{\frac{1}{4\pi\epsilon_0}=8.99\cdot 10^9 N\cdot m^2\cdot C^{-2}} and r=0.5 \cdot 10^{-9} m we obtain:

\displaystyle{U_{midpoint}=\frac{q}{2\pi \epsilon_0r}}=5.759 \approx 5.8 V}

The resulting direction of the electric field will lie on the line that joins the charges but since it is calculated in the midpoint and the charges are the same we can directly say that its magnitude is zero.

6 0
3 years ago
A box has a mass of 35kg.he pulls the rope horizontally with a force of 175 N. Find the horizontal acceleration of the box as it
Cloud [144]

Answer:

3.43 m/s^2

Explanation:

Force is equal to mass times acceleration. (F=ma). You can use inverse operations to get the formula for acceleration, which is acceleration is equal to force divided by mass. (a=F/m). Since there are two forces here, the force friction (55 N), and the force applied (175 N), we must solve for the net force. To solve for the net force, you take the applied force (175 N) and subtract the frictional force from it (55 N). Thus, the net force is 120 N. With this done, we can now solve for our acceleration.

Using the equation for acceleration, we take the force and divide it by mass.

120/35

Answer: 3.43* m/s^2**

*Note: This is rounded to the nearest hundredth, the full answer is: 3.42857143

**Note: In case you're confused, this is meters per second squared.

8 0
3 years ago
If a planet's orbital speed is 20 km/s when it's at its average distance from the sun which is most likely orbital speed when it
Alona [7]

Answer:25km/s

Explanation:

8 0
3 years ago
PLEASE HELP ME WILL GIVE BRAINLIEST
weqwewe [10]

Answer:

A.always changing

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • The magnetic force on a wire 274 cm long is . If electrons move through the wire in 1.90 s, what is the magnitude of magnetic fi
    9·1 answer
  • A biconvex lens is formed by using a piece of plastic(n=1.70).
    5·1 answer
  • A ball rolls down a hill, starting from rest. How long is it rolling if it accelerates at 3m/s2 and ends with a velocity of 35m/
    6·1 answer
  • The Solar System is made up of eight planets, numerous comets, asteroids, and moons, and the Sun. The force that holds all of th
    7·2 answers
  • A bus travels a distance of 120 km with a speed of 40km per hour and returns with a speed of 30km per hour calculate the average
    5·1 answer
  • Why do satellites in orbit fall to the ground? why dont they fly into space?
    15·1 answer
  • !
    14·2 answers
  • Which process can be used to power your Home? A solar thermal energy B solar electric energy C both solar thermal energy and sol
    14·1 answer
  • What is the gravitational potential energy of a 3 kg ball that is 1 meter above the floor?
    12·1 answer
  • What are the answers according to Henry's classification.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!