Answer:
the average drift speed of the mobile electrons in the metal is 1.089 x 10⁻⁴ m/s.
Explanation:
Given;
mobility of the mobile electrons in the metal, μ = 0.0033 (m/s)/(N/C)
the electric field strength inside the cube of the metal, E = 0.033 N/C
The average drift speed of the mobile electrons in the metal is calculated as;
v = μE
v = 0.0033 (m/s)/(N/C) x 0.033 N/C
v = 1.089 x 10⁻⁴ m/s.
Therefore, the average drift speed of the mobile electrons in the metal is 1.089 x 10⁻⁴ m/s.
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
Answer:
Explanation:
When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.
<span>"The direction of motion is caused by the Coriolis effect. This can be ... storms in the Northern Hemisphere, but rotate clockwise in the <span>Southern Hemisphere</span></span>