Answer:
this is the answer explanation of previous question. as what you say in comment i do that
Explanation:
Given the mass of HCl is ---- 0.50 g
The volume of solution is --- 4.0 L
To determine the pH of the resulting solution, follow the below-shown procedure:
1. Calculate the number of moles of HCl given by using the formula:

2. Calculate the molarity of HCl.
3. Calculate pH of the solution using the formula:
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Since HCl is a strong acid, it undergoes complete ionization when dissolved in water.

Thus, ![[HCl]=[H^+]](https://tex.z-dn.net/?f=%5BHCl%5D%3D%5BH%5E%2B%5D)
Calculation:
1. Number of moles of HCl given:

2. Concentration of HCl:

3. pH of the solution:
![pH=-log[H^+]\\=-log(0.003425)\\=2.47](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D%5C%5C%3D-log%280.003425%29%5C%5C%3D2.47)
Hence, pH of the given solution is 2.47.
To determine the number of cups of milk, we first calculate for the volume of the milk needed. Then, we use a conversion factor for the volume from cubic centimeter to cups. From literature, 1 cubic centimeter is equal to 0.0042 cup. We do as follows:
Volume of milk = ( 2.50 kg ) ( 1000 g / 1 kg ) / 1.03 g /cm^3 = 2427.18 cm^3
cups of milk = 2427.18 cm^3 ( 0.0042 cup / 1 cm^3 ) = 10.19 cups
Explanation:
temperature changes affect seawater density as water cools its density increases. As water cools H2O molecules pack more closely together because the molecules are vibrating less at low temperatures and take up less volume. The same number of water molecules in smaller volume results higher density