Answer:
Explanation:
Gold (111) Chloride:
AuCl₃
The oxidation state of gold is +3.
Chlorine is present in group seventeen and have seven valance electrons . Thus it accept one electron to complete the octet and show oxidation state -1.
When it react with gold(III) three chlorine atoms are combine with one gold atom to make compound overall neutral.
Calcium Carbonate:
CaCO₃
Carbonate formula is CO₃²⁻ . It means it carry -2 charge . Calcium is present in group two. It has two valance electrons and lose them to get complete octet thus shows +2 oxidation state.
When it combine with carbonate the overall compound is neutral because -2 and +2 charges cancel each other.
Hydrobromic Acid
HBr
Hydrogen has one electron while bromine has seven valance electrons. Bromine require one more electron to complete the octet. It react with hydrogen by sharing of one electron of hydrogen and form polar covalent compound.
Answer:
![[NO]=\frac{k_{-1}}{k_1} [N_2O_2]](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Cfrac%7Bk_%7B-1%7D%7D%7Bk_1%7D%20%5BN_2O_2%5D)
Explanation:
Hello!
In this case, since the reaction may be assumed in chemical equilibrium, we can write up the rate law as shown below:
![r=-k_1[NO]+k_{-1}[N_2O_2]](https://tex.z-dn.net/?f=r%3D-k_1%5BNO%5D%2Bk_%7B-1%7D%5BN_2O_2%5D)
However, since the rate of reaction at equilibrium is zero, due to the fact that the concentrations remains the same, we can write:
![0=-k_1[NO]+k_{-1}[N_2O_2]](https://tex.z-dn.net/?f=0%3D-k_1%5BNO%5D%2Bk_%7B-1%7D%5BN_2O_2%5D)
Which can be also written as:
![k_1[NO]=k_{-1}[N_2O_2]](https://tex.z-dn.net/?f=k_1%5BNO%5D%3Dk_%7B-1%7D%5BN_2O_2%5D)
Then, we solve for the concentration of NO to obtain:
![[NO]=\frac{k_{-1}}{k_1} [N_2O_2]](https://tex.z-dn.net/?f=%5BNO%5D%3D%5Cfrac%7Bk_%7B-1%7D%7D%7Bk_1%7D%20%5BN_2O_2%5D)
Best regards!
Answer:
mass of platinum = 2526.12 g
Explanation:
Given data:
Mass of water = 125 g
Initial temperature of water= 100.0°C
Initial temperature of Pt = 20.0°C
Final temperature = 235°C
Specific heat of Pt = 0.13 j/g°C
Specific heat of water = 4.184 j/g°C
Mass of platinum = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q(w) = Q(Pt)
m.c. (T2 - T1) = m.c.
(T2 - T1)
125 g × 4.184 j/g°C × (235°C - 100.0°C) = m × 0.13 j/g°C × (235°C - 20°C)
125 g × 4.184 j/g°C × 135°C = m × 0.13 j/g°C × 215°C
70605 j = m×27.95 j/g
m = 70605 j /27.95 j/g
m = 2526.12 g
2 × (atomic mass of Ag) + (atomic mass of Cl (