write the equation for the reaction
that is 6 F2 +P4 =4 PF3
find the theoretical mass that is
let the theoretical yield be represented by y
theoretical yield = 78.1/100 = 120/y
y= 153.6 grams
find the number of moles of PF3
moles = mass/molar mass
= 153.6/87.97 =1.746 moles
by use of mole ratio between F2 :PF3 which is 6:4 the moles of F2 is therefore= 1.746 x 6/4 = 2.62 moles
mass = moles x molar mass
= 1.746 moles x38 g/mol = 99.6 grams
Answer:
They form when plates collide. I hope this helps you!
Answer:
[N₂] = 0.032 M
[O₂] = 0.0086 M
Explanation:
Ideal Gas Law → P . V = n . R . T
We assume that the mixture of air occupies a volume of 1 L
78% N₂ → Mole fraction of N₂ = 0.78
21% O₂ → Mole fraction of O₂ = 0.21
1% another gases → Mole fraction of another gases = 0.01
In a mixture, the total pressure of the system refers to total moles of the mixture
1 atm . 1L = n . 0.082L.atm/mol.K . 298K
n = 1 L.atm / 0.082L.atm/mol.K . 298K → 0.0409 moles
We apply the mole fraction to determine the moles
N₂ moles / Total moles = 0.78 → 0.78 . 0.0409 mol = 0.032 moles N₂
O₂ moles / Total moles = 0.21 → 0.21 . 0.0409 mol = 0.0086 moles O₂
Answer:
it denotes 6.52× 10⁸ in scientific notation
Answer:
c. 3
Explanation:
Dicholorination of tertiary alkane ( i.e. isobutane) is a halogenation reaction which makes it possible to replace the alkyl functional group with halogenated chlorine.
When Isobutane is subjected to free radicals chlorination, three distinct dichlorination can be formed.
The mechanism of the formation of these products can be seen in the image attached below.