Answer:
a) the inductance of the coil is 6 mH
b) the emf generated in the coil is 18 mV
Explanation:
Given the data in the question;
N = 570 turns
diameter of tube d = 8.10 cm = 0.081 m
length of the wire-wrapped portion l = 35.0 cm = 0.35 m
a) the inductance of the coil (in mH)
inductance of solenoid
L = N²μA / l
A = πd²/4
so
L = N²μ(πd²/4) / l
L = N²μ(πd²) / 4l
we know that μ = 4π × 10⁻⁷ TmA⁻¹
we substitute
L = [(570)² × 4π × 10⁻⁷× ( π × (0.081)² )] / 4(0.35)
L = 0.00841549 / 1.4
L = 6 × 10⁻³ H
L = 6 × 10⁻³ × 1000 mH
L = 6 mH
Therefore, the inductance of the coil is 6 mH
b)
Emf ( ∈ ) = L di/dt
given that; di/dt = 3.00 A/sec
{∴ di = 3 - 0 = 3 and dt = 1 sec}
Emf ( ∈ ) = L di/dt
we substitute
⇒ 6 × 10⁻³ ( 3/1 )
= 18 × 10⁻³ V
= 18 × 10⁻³ × 1000
= 18 mV
Therefore, the emf generated in the coil is 18 mV
Answer:
Tso = 28.15°C
Explanation:
given data
t2 = 21 mm
ki = 0.026 W/m K
t1 = 9 mm
kp = 180 W/m K
length of the roof is L = 13 m
net solar radiation into the roof = 107 W/m²
temperature of the inner surface Ts,i = -4°C
air temperature is T[infinity] = 29°C
convective heat transfer coefficient h = 47 W/m² K
solution
As when energy on the outer surface at roof of a refrigerated truck that is balance as
Q =
.....................1
Q =
.....................2
now we compare both equation 1 and 2 and put here value
solve it and we get
Tso = 28.153113
so Tso = 28.15°C
<em>Logs.</em>
<em>Like data logs. Sometimes people make these logs to keep tabs on other people or to get important information put down somewhere that way it is saved and can be looked back upon later. Anytime someone makes an action on the computer, it makes a TMP file representing a log of what you want it to do before the computer quickly get's rid of the file.</em>
<em>-Ɽ3₮Ɽ0 Ⱬ3Ɽ0</em>
<em />