We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
I’m pretty sure the answer is c and d hope this helps and good luck
Answer:
v = 54.2 m / s
Explanation:
Let's use energy conservation for this problem.
Starting point Higher
Em₀ = U = m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
m g h = ½ m v²
v² = 2gh
v = √ 2gh
Let's calculate
v = √ (2 9.8 150)
v = 54.2 m / s
Answer: to provide evidence to a theory
Explanation: Experimentation allows for multiple trials to provide evidence to a scientific theory. Without experimentation there would be no data to back up your hypothesis.