Answer:
<em>The distance of the light is 9.4608 x 10^25 m</em>
<em></em>
Explanation:
Time taken by the light = 10 billion years = 10 x 10^9 years
speed of light = 3 x 10^8 m/s
speed of light in m/years is = (3 x 10^8)/(60 x 60 x 24 x 365) = 9.4608 x 10^15 m/year
distance = speed x time
therefore, the distance of this light = 10 x 10^9 x 9.461 x 10^15 = <em>9.4608 x 10^25 m</em>
<span> The term for the depth of the water needed to make a boat afloat is called the draft of the boat. It can be measured as the distance from the water surface down the lowest point of the vessel. It can be imagined as the submerged portion of the boat during navigation.</span>
Work = (weight) x (distance)
Work = (50 lb) x (1 kg / 2.20462 lb) x (9.81 newton/kg)
x (4 feet) x (1 meter / 3.28084 feet)
= (50 x 9.81 x 4) / (2.20462 x 3.28084) newton-meter
= 271.3 joules .
We don't need to know how long the lift took, unless we
want to know how much power he was able to deliver.
Power = (work) / (time)
= (271.3 joule) / (5 sec) = 54.3 watts .
________________________________________
The easy way:
Work = (weight) x (distance)
= (50 pounds) x (4 feet) = 200 foot-pounds
Look up (online) how many joules there are in 1 foot-pound.
There are 1.356 joules in 1 foot-pound.
So 200 foot-pounds = (200 x 1.356) = 271.2 joules.
That's the easy way.
Answer: assuming that the billiard balls are of identical weight the impacted billiard ball will move forward at around 0.5m/s (not considering energy conservation). The ball impacting the 2nd one would stop because most of its Kinetic energy would have been transferred into the not moving ball.
Explanation: hope this helps!
The electromagnetic spectrum<span>. </span>Electromagnetic waves carry transverse vibrations in<span> electrical and </span>magnetic<span> fields, not vibrating particles. </span>Electromagnetic waves<span> do not need matter to travel through - they can travel through empty space AKA a vacuum </span>