Answer:
Option b. 22 g of He will have the greatest volume at STP
Explanation:
In order to determine the volume, we apply the Ideal Gases Law equation:
P . V = n . R . T
V = n . R . T / P
R, T and P are the same in all the situation we must define n (number of moles).
The one that has the greatest number of moles will have the greatest volume at STP
22 g of Ne . 1mol / 20.1 g = 1.09 moles of Ne
22g of He . 1mol / 4 g = 5.5 moles of He
22 g of O₂ . 1mol / 32g = 0.68 moles of O₂
22 g of Cl₂ . 1mol / 70.9 g = 0.31 moles of Cl₂
Answer:
Products
Explanation:
In a chemical reaction, the atoms and molecules produced by the reaction are called products
Answer:
A) 1059 J/mol
B) 17,920 J/mol
Explanation:
Given that:
Cp = 29.42 - (2.170*10^-3 ) T + (0.0582*10^-5 ) T2 + (1.305*10^-8 ) T3 – (0.823*10^-11) T4
R (constant) = 8.314
We know that:

We can determine
from above if we make
the subject of the formula as:




A).
The formula for calculating change in internal energy is given as:

If we integrate above data into the equation; it implies that:



Hence, the internal energy that must be added to nitrogen in order to increase its temperature from 450 to 500 K = 1059 J/mol.
B).
If we repeat part A for an initial temperature of 273 K and final temperature of 1073 K.
then T = 273 K & T2 = 1073 K
∴


