Answer:
For this case we know that the confidence level is 89.48% or 0.8948 and the significance would be:
and the value of 
Now we need to find a quantile in the normal standard distribution who accumulate 0.0526 of the area on each tail of the normal standard distribution and we got:

And we can use the following excel code for example:
"=NORM.INV(0.0526,0,1)"
Step-by-step explanation:
For this case we know that the confidence level is 89.48% or 0.8948 and the significance would be:
and the value of 
Now we need to find a quantile in the normal standard distribution who accumulate 0.0526 of the area on each tail of the normal standard distribution and we got:

And we can use the following excel code for example:
"=NORM.INV(0.0526,0,1)"
Answer: Option D
Step-by-step explanation:
Hey there!
Here; Looking at it we can state that it is a Right angled triangle.
<u>And</u><u> </u><u>must</u><u> </u><u>use</u><u> </u><u>the</u><u> </u><u>Pyth</u><u>agoras</u><u> </u><u>relat</u><u>ion</u><u> </u><u>if</u><u> </u><u>the</u><u> </u><u>trian</u><u>gle</u><u> </u><u>is</u><u> </u><u>a</u><u> </u><u>Right</u><u> angled</u><u> triangle</u><u>.</u>
<u>So</u><u>,</u><u> </u><u>let</u><u>'s</u><u> </u><u>wo</u><u>rk</u><u> on</u><u> </u><u>it</u><u>.</u>
Let ABC be a triangle.
Taking reference angle as C, we get;
perpendicular= 3m
Hypotenuse= 7m
Base = xm
Now;


<u>Pu</u><u>t</u><u> all</u><u> values</u><u>.</u>
<u>
</u>
<u>Simplify</u><u> </u><u>to</u><u> get</u><u> answer</u><u>.</u>
<u>
</u>
<u>
</u>
<u>Ther</u><u>efore</u><u>,</u><u> </u><u>X=</u><u> </u><u>6</u><u>.</u><u>3</u><u>m</u><u>.</u>
<em><u>Hop</u></em><em><u>e</u></em><em><u> it</u></em><em><u> helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
<em>See above photograph</em>
Step-by-step explanation:
This is how your graph will look like with an x-intercept of [−5, 0] (will not see, according to the scale, but on my device, you can), and a y-intercept of [0, 50]. The way to figure out all the coordinates upon this scale is to simply create a y-x value chart. Plug in each input value [x-value] to get your output value [y-value]:
<u>x|y</u>
0|50
1|60
2|70
3|80
4|90
5|100
6|110
7|120
8|130
9|140
10|150
11|160
Then, you simply just draw your line based of this chart.
I am joyous to assist you anytime.