Answer:
(a) 0.33 second
(b) 6 cm/s
Explanation:
Frequency, f = 3 waves per second
wavelength, λ = 2 cm = 0.02 m
(a) The period of wave is defined as the time taken by the wave to complete one oscillation. It is the reciprocal of frequency.
T = 1 / f = 1 / 3 = 0.33 second
(b) the relation between wave velocity, frequency and wavelength is given by
v = f x λ
v = 3 x 0.02 = 0.06 m /s
v = 6 cm /s
Answer: The speed of the moon's rotation keeps the same side always facing Earth.
Explanation: Please mark me brainiest
Answer:
4 (N/kg) or B
Explanation:
An application of the equation for Newton’s law of universal gravitation can be used to determine the gravitational field strength at the 2 kg object’s location.
Answer:
1.791 MN
Explanation:
Thrust of the rocket can be found using the relation
T = v.dm/dt, where
T = thrust off the rocket
v = speed of the rocket, 9 km/s = 9000 m/s
dm/dt = rate at which fuel burns, 199 kg/s
Substituting the values into the formula, we have
T = 9000 * 199
T = 1791000 N
T = 1.791*10^6 N
Since 1 MN = 10^6, thus
T = 1.791 MN
Answer:
E = 301.5 J
Explanation:
We have,
Mass of mother, m = 67 kg
Here, a sneaky teenager crawls under the trampoline and uses the ring to pull the trampoline slowly down. As she passes through the position at which she was before her son stretched the trampoline, her speed is 3 m/s.
It is required to find the elastic potential energy the son add to the trampoline by pulling it down. It is based on the conservation of energy.
The elastic potential energy of the mother = the elastic potential energy the son add to the trampoline.

So, the elastic potential energy is :

So, the elastic potential energy of 301.5 J the son add to the trampoline by pulling it down.