The correct answer is:
<span>B.) At terminal velocity there is no net force
In fact, when the parachutist reaches the terminal velocity, his velocity does not change any more. It means that the acceleration acting on the parachutist is zero, and for Newton's second law, this means the net force acting on him is zero:
</span>

<span>because the acceleration is zero: a=0.
This also means that the two relevant forces acting on the parachutist (gravity, downward, and air resistance, upward) are balanced to produce a net force equal to zero.</span>
Answer: 247.67 V
Explanation:
Given
Potential At A 
Potential at 
when particle starts from A it reaches with velocity
at Point while when it starts from C it reaches at point B with velocity 
Suppose m is the mass of Particle
Change in Kinetic Energy of particle moving under the Potential From A to B

Change in Kinetic Energy of particle moving under the Potential From C to B

Divide 1 and 2 we get

on solving we get


Voltage = current(I) * resistance (R)
V = 18
R = 6
18 = I * 6
I = 18/6 = 3 Amps or D
Answer:
C. 0.2 Hertz
Explanation:
The frequency of a spring is equal to the reciprocal of the period:

where
f is the frequency
T is the period
For the spring in this problem,
T = 5 s
therefore, the frequency is

A. Coming out near the South Pole and going in near the North Pole