Answer: (a) The solubility of CuCl in pure water is
.
(b) The solubility of CuCl in 0.1 M NaCl is
.
Explanation:
(a) Chemical equation for the given reaction in pure water is as follows.

Initial: 0 0
Change: +x +x
Equilibm: x x

And, equilibrium expression is as follows.
![K_{sp} = [Cu^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCu%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)

x = 
Hence, the solubility of CuCl in pure water is
.
(b) When NaCl is 0.1 M,
, 
, 
Net equation: 
= 0.1044
So for, 
Initial: 0.1 0
Change: -x +x
Equilibm: 0.1 - x x
Now, the equilibrium expression is as follows.
K' = 
0.1044 = 
x = 
Therefore, the solubility of CuCl in 0.1 M NaCl is
.
Answer:
3. Inverse 1. Direct
Explanation:
P- pressure
V - volume
T - temperature
P1*V1 / T1 = P2*V2 / T2 ...... (1)
That's the general gas law with the combined ideas of charles, boyle & lussac.
Whenever you are restricted as "constant" temperature, volume, or pressure...cancel them off of your equation.
in this case 3. is indirectly telling us to cancel the temperature (T).
so we'll be left w P1*V1 = P2*V2
now notice that any relation ship that is multiplied like the one above consists of inversely related quantities. & so we conclude that-
P & V are inversely proportional or have an inverse relationship.
similarly in 1. we'll cancel p off of the general formula (1)
to be left with V1/T1 = V2/T2
also note that quantities involved in division are directly related to each other & hence the answer.
Answer:
can u give us the options
Answer:
Evaporation
Explanation:
Water in the ocean, rivers, lakes, etc. is part of the hydrosphere, and when that water evaporates it enters the atmosphere