F_P + F_Q = M g
F_P = M g - F_Q
Torque, or moment of force:
∑ M_P = 0
∑ M_P = M g L - F_Q · 3 L
0 = M g L - 3 F_Q L / : L
0 = M g - 3 F_Q
3 F_Q = M g
F_Q = M g /3
Finally:
F_P = M g - M g/3
F_P = 4 M g / 3
Answer
given,
change in enthalpy = 51 kJ/mole
change in activation energy = 109 kJ/mole
when a reaction is catalysed change in enthalpy between the product and the reactant does not change it remain constant.
where as activation energy of the product and the reactant decreases.
example:
ΔH = 51 kJ/mole
E_a= 83 kJ/mole
here activation energy decrease whereas change in enthalpy remains same.
Answer:
Electrons.
Explanation:
Electricity was discovered before the discovery of electrons by J.J Thompson in 1896. Before the electron, it was thought that it is the positive ions that move through the wire and carry current—that's why today the conventional current represents the flow of positive charges.
After J.J Thompson's discovery of the electrons, it was realized that it is the electrons that actually carry the current through the conductor. But changing the direction of the conventional current didn't seem appropriate, and that's why the convention continues to be used to this day—reminding us that once it were the positive ions that were thought to carry the current.