Answer:
Explanation:
Homogeneous mixture is a mixture in which the components of the mixture are in the same proportion throughout any sample extracted from the mixture while an heterogeneous mixture is a mixture in which the components of the mixture differ in term of proportion when different samples of the mixture are extracted and compared.
For example, a sandy water will have some parts (usually the bottom) of the mixture with more sand than other parts of the mixture, hence, it (sandy water) is a heterogeneous mixture. While salty and ocean water has it's salt dissolved in the same proportion throughout the water in the mixture, hence salty and/or ocean water is a homogeneous mixture.
Sandy water can be separated by filtration (i.e using a filter paper to separate the sand from the water when the mixture is poured over a filter paper) while salty and ocean water can be separated by distillation (i.e boiling of the mixture so the water molecules can boil and move through a tube as gas or steam into another container where they are cooled and converted back to liquid or water while leaving the solid salt component of the mixture in the boiling tube).
1s^2
2s^2
2p^6
3s^2
3p^6
4s^2
3d^10
4p^4
Answer:
See explanation below
Explanation:
The question is incomplete, cause you are not providing the structure. However, I found the question and it's attached in picture 1.
Now, according to this reaction and the product given, we can see that we have sustitution reaction. In the absence of sodium methoxide, the reaction it's no longer in basic medium, so the sustitution reaction that it's promoted here it's not an Sn2 reaction as part a), but instead a Sn1 reaction, and in this we can have the presence of carbocation. What happen here then?, well, the bromine leaves the molecule leaving a secondary carbocation there, but the neighbour carbon (The one in the cycle) has a more stable carbocation, so one atom of hydrogen from that carbon migrates to the carbon with the carbocation to stabilize that carbon, and the result is a tertiary carbocation. When this happens, the methanol can easily go there and form the product.
For question 6a, as it was stated before, the mechanism in that reaction is a Sn2, however, we can have conditions for an E2 reaction and form an alkene. This can be done, cause the extoxide can substract the atoms of hydrogens from either the carbon of the cycle or the terminal methyl of the molecule and will form two different products of elimination. The product formed in greater quantities will be the one where the negative charge is more stable, in this case, in the primary carbon of the methyl it's more stable there, so product 1 will be formed more (See picture 2)
For question 6b, same principle of 6a, when the hydrogen migrates to the 2nd carbocation to form a tertiary carbocation the methanol will promove an E1 reaction with the vecinal carbons and form two eliminations products. See picture 2 for mechanism of reaction.
Lower the melting point
Explanation:
Salts helps to melt road by lowering the melting point. It acts as an impurity and generally, impurities low the melting point of substances.
Salts are used as an antifreeze.
- Water freezes at 0°C and forms ice/snow which can impede human and vehicular movement.
- When salt is added, it causes the depression of the freezing point by lowering it further.
- The freezing point is pegged back at -6°C.
- This way it takes more low temperature to freeze the water.
- The salt acts as an impurity and causes the depression of melting point and widening of the melting range.
learn more:
Matter brainly.com/question/10972073
#learnwithBrainly