1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VladimirAG [237]
3 years ago
6

Please help with this question​

Physics
2 answers:
lukranit [14]3 years ago
7 0

Answer:

the type of force is <u>Unbalanced</u><u> </u><u>force</u><u>;</u>

<u>As</u><u> </u><u>upward</u><u> </u><u>force</u><u> </u><u>is</u><u> </u><u>not</u><u> </u><u>equal</u><u> </u><u>to</u><u> </u><u>downward</u><u> </u><u>force</u><u>.</u>

kompoz [17]3 years ago
3 0
The answer is unbalanced because the numbers 100n and 300n don’t equal each other. If the answer was balanced the numbers would have to equal each other. Also, the answer net force would only be the answer if we were adding the numbers. I hope this helped you! :)
You might be interested in
Which of the following is not an example of a polymer?
Gala2k [10]
Concrete is not a polymer which Nylon, and Kevlar are
8 0
3 years ago
Read 2 more answers
What is impulse? How does this relate to momentum?
lawyer [7]
Impulse is a force acting briefly on a body and producing a finite change of momentum.
This relates to momentum because impulse is a change in momentum. Impulse = momentum. Since force is a vector quantity, impulse is also a vector in the same direction. Impulse applied to an object produces equivalent vector change in its linear momentum, also in the same direction. m•(triangle)v
4 0
3 years ago
Calculate, for the judge, how fast you were going in miles per hour when you ran the red light because it appeared Doppler-shift
sammy [17]

Answer:

The doppler effect equation is:

f' = \frac{v +v0}{v - vs}*f

In the equation we have frequencies, but then we have the wavelengths of the lights, remember the relation:

v = f*λ

then:

f = v/λ

and v is the speed of light, then:

f = c/λ

where:

f' is the observed frequency, in this case, is equal to f = (3*10^17nm/s)/550 nm

f is the real frequency, in this case, is (3*10^17nm/s)/650 nm

vs is the speed of the source, in this case, the source is not moving, then vs = 0 m/s.

v is the speed of the wave, in this case, is equal to the speed of light, v = 3*10^8 m/s

v0 is your speed, this is what we want to find.

Replacing those quantities in the equation, we get:

(3*10^17nm/s)/550 = (3*10^8 m/s + v0)/(3*10^8 m/s)*(3*10^17nm/s)/650 nm

(650nm)/(550nm) = (3*10^8 m/s + v0)/(3*10^8 m/s)

1.182*(3*10^8 m/s) = (3*10^8 m/s + v0)

1.182*(3*10^8 m/s) -  (3*10^8 m/s) = v0 = 54,600,000 m/s

So your speed was 54,600,000 m/s, which is a lot.

6 0
3 years ago
An infinitely long straight wire has a uniform linear charge density of Derive the 4. equation for the electric field a distance
marshall27 [118]

Answer:

E = \frac{\lambda}{2\pi \epsilon_0 r}

Explanation:

Let the linear charge density of the charged wire is given as

\frac{q}{L} = \lambda

here we can use Gauss law to find the electric field at a distance r from wire

so here we will assume a Gaussian surface of cylinder shape around the wire

so we have

\int E. dA = \frac{q}{\epsilon_0}

here we have

E \int dA = \frac{\lambda L}{\epsilon_0}

E. 2\pi r L = \frac{\lambda L}{\epsilon_0}

so we have

E = \frac{\lambda}{2\pi \epsilon_0 r}

4 0
3 years ago
In his​ motorboat, Bill Ruhberg travels upstream at top speed to his favorite fishing​ spot, a distance of 120120 ​mi, in 33 hr.
photoshop1234 [79]

Answer:

The rate of the boat in still water is 44 mph and the rate of the current is 4 mph

Explanation:

x​ = the rate of the boat in still water

y​ = the rate of the current.

Distance travelled = 120 mi

Time taken upstream = 3 hr

Time taken downstream = 2.5 hr

Speed = Distance / Time

Speed upstream

\frac{120}{3}=x-y\\\Rightarrow 40=x-y

Speed downstream

\frac{120}{2.5}=x+y\\\Rightarrow 48=x+y

Adding both the equations

48+40=x-y+x+y\\\Rightarrow 88=2x\\\Rightarrow 44=x

40=44-y\\\Rightarrow 40-44=-y\\\Rightarrow y=4

The rate of the boat in still water is <u>44 mph</u> and the rate of the current is <u>4 mph</u>

8 0
3 years ago
Other questions:
  • Select the correct statement to describe when a sample of liquid water vaporizers into water vapor
    10·1 answer
  • Photoelectric effect:
    9·1 answer
  • A scooter has wheels with a diameter of 120 mm. What is the angular speed of the wheels when the scooter is moving forward at 6.
    13·1 answer
  • A car is traveling at 42.0 km/h on a flat highway. (a) If the coefficient of friction between road and tires on a rainy day is 0
    11·1 answer
  • Which observational tool helped astronomers Arno Penzias and Robert Wilson discover the
    12·1 answer
  • Vector A⃗ points in the positive y direction and has a magnitude of 12 m. Vector B⃗ has a magnitude of 33 m and points in the ne
    6·1 answer
  • A rigid tank contains 1 kg of air (ideal gas) at 15 °C and 210 kPa. A paddle wheel supplies work input to the air such that fina
    9·1 answer
  • Find the mass of a football player who's momentum is 630 kg•m/s backward and. is traveling at 7 m/s.
    14·1 answer
  • The energy carried by sound waves is called -
    13·2 answers
  • The Andromeda Galaxy (our nearest spiral neighbor) has spectral lines that show a blue shift. From this we may conclude that:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!