As the temperature of the lead and helium is the same. Thus the average kinetic energy is also the same for lead and helium.
Reason:
It is given that a 5.0-kg bar of lead is placed inside a 12-L chamber filled with helium gas. The temperature of the lead and helium is the same. It is required to compare the average kinetic energy of the lead atoms and helium atoms.
The average kinetic energy is calculated as,
.
Here K is the average kinetic energy, R is the gas constant, N is the Avogadro's number, and T is the temperature.
As the temperature is the same for both lead and helium. As a result, the average kinetic energy is also the same for lead and helium.
Learn more about average kinetic energy here,
brainly.com/question/1599923
#SPJ4
Answer:
w₂ = 22.6 rad/s
Explanation:
This exercise the system is formed by platform, man and bricks; For this system, when the bricks are released, the forces are internal, so the kinetic moment is conserved.
Let's write the moment two moments
initial instant. Before releasing bricks
L₀ = I₁ w₁
final moment. After releasing the bricks
= I₂W₂
L₀ = L_{f}
I₁ w₁ = I₂ w₂
w₂ = I₁ / I₂ w₁
let's reduce the data to the SI system
w₁ = 1.2 rev / s (2π rad / 1rev) = 7.54 rad / s
let's calculate
w₂ = 6.0/2.0 7.54
w₂ = 22.6 rad/s
Answer:
Explanation:
Brownian motion is a random (irregular) motion of particles e.g smoke particle. The set up in the diagram can be used to observe the motion of smoke.
1. The apparatus used are:
A is a source of light
B is a converging lens
C is a glass smoke cell
D is a microscope
2. The uses of the apparatus are:
A - produces the light required to so as to see clearly the movement of the particles.
B - converges the rays of light from the source to the smoke cell.
C - is made of glass and used for encamping the smoke particles so as not to mix with air.
D - is used for the clear view or observation or study of the motion of the smoke particles in the cell.
Answer:
is it 20kg. Two opposing forces pushing onto each other
"<span>During radioactive decay, atoms break down, releasing, particles or energy" is the one statement about radioactive decay among the following choices given in the question that is true. The correct option is option "b".
"H</span>alf-life" is the term among the following that <span>refers to the time it takes for one-half of the radioactive atoms in a sample of a radioactive element to decay. The correct option is option "d".</span>