Answer:
Push - The most common form of force is a push through physical contact (like a lawnmower or shopping cart)
Pull - You can apply a force by directly pulling on an object (like pulling a wagon)
Explanation:
Answer:
Decreases to half.
Explanation:
From the question given above, the following data were obtained:
Initial mass (m₁) = m
Initial force (F₁) = F
Initial acceleration (a₁) =?
Final mass (m₂) = ½m
Final force (F₂) = ¼F
Final acceleration (a₂) =?
Next, we shall determine a₁. This can be obtained as follow:
F₁ = m₁a₁
F = ma₁
Divide both side by m
a₁ = F / m
Next, we shall determine a₂.
F₂ = m₂a₂
¼F = ½ma₂
2F = 4ma₂
Divide both side by 4m
a₂ = 2F / 4m
a₂ = F / 2m
Finally, we shall determine the ratio of a₂ to a₁. This can be obtained as follow:
a₁ = F / m
a₂ = F / 2m
a₂ : a₁ = a₂ / a₁
a₂ / a₁ = F/2m ÷ F/m
a₂ / a₁ = F/2m × m/F
a₂ / a₁ = ½
Cross multiply
a₂ = ½a₁
From the illustrations made above, the acceleration of the car will decrease to half the original acceleration
The magnitude of the magnetic moment due to the electron's motion is
.
<h3>
What is magnetic moment?</h3>
The magnetic pull and direction of a magnet or other object that produces a magnetic field are referred to as the magnetic moment in electromagnetism. Things that have magnetic moments include electromagnets, permanent magnets, various compounds, elementary particles like electrons, and a number of celestial objects (such as many planets, some moons, stars, etc).
The term "magnetic moment" really refers to the magnetic dipole moment of a system, which is the portion of the magnetic moment that can be represented by an equivalent magnetic dipole or a pair of magnetic north and south poles that are only very slightly apart. The magnetic dipole component is adequate for sufficiently small magnets or over sufficiently large distances.
Calculations:
radius= 
velocity=
Working formula, M=N/A


=


=
M=
=
To learn more about magnetic moment ,visit:
brainly.com/question/14298729
#SPJ4
To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>